5 resultados para Learning algorithms

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel method of controller (PID) autotuning, involving neural networks and genetic algorithms: to employ neural networks to map the identification measures and controller parameters to objective functions, adapt these models on-line; to employ the genetic algorithm to perform on-line minimization.