3 resultados para ITU-T Definitions
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
In his introduction, Pinna (2010) quoted one of Wertheimer’s observations: “I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of color. Do I have ‘327’? No. I have sky, house, and trees.” This seems quite remarkable, for Max Wertheimer, together with Kurt Koffka and Wolfgang Koehler, was a pioneer of Gestalt Theory: perceptual organisation was tackled considering grouping rules of line and edge elements in relation to figure-ground segregation, i.e., a meaningful object (the figure) as perceived against a complex background (the ground). At the lowest level – line and edge elements – Wertheimer (1923) himself formulated grouping principles on the basis of proximity, good continuation, convexity, symmetry and, often forgotten, past experience of the observer. Rubin (1921) formulated rules for figure-ground segregation using surroundedness, size and orientation, but also convexity and symmetry. Almost a century of research into Gestalt later, Pinna and Reeves (2006) introduced the notion of figurality, meant to represent the integrated set of properties of visual objects, from the principles of grouping and figure-ground to the colour and volume of objects with shading. Pinna, in 2010, went one important step further and studied perceptual meaning, i.e., the interpretation of complex figures on the basis of past experience of the observer. Re-establishing a link to Wertheimer’s rule about past experience, he formulated five propositions, three definitions and seven properties on the basis of observations made on graphically manipulated patterns. For example, he introduced the illusion of meaning by comics-like elements suggesting wind, therefore inducing a learned interpretation. His last figure shows a regular array of squares but with irregular positions on the right side. This pile of (ir)regular squares can be interpreted as the result of an earthquake which destroyed part of an apartment block. This is much more intuitive, direct and economic than describing the complexity of the array of squares.
Resumo:
Revenue Management’s most cited definitions is probably “to sell the right accommodation to the right customer, at the right time and the right price, with optimal satisfaction for customers and hoteliers”. Smart Revenue Management (SRM) is a project, which aims the development of smart automatic techniques for an efficient optimization of occupancy and rates of hotel accommodations, commonly referred to, as revenue management. One of the objectives of this project is to demonstrate that the collection of Big Data, followed by an appropriate assembly of functionalities, will make possible to generate a Data Warehouse necessary to produce high quality business intelligence and analytics. This will be achieved through the collection of data extracted from a variety of sources, including from the web. This paper proposes a three stage framework to develop the Big Data Warehouse for the SRM. Namely, the compilation of all available information, in the present case, it was focus only the extraction of information from the web by a web crawler – raw data. The storing of that raw data in a primary NoSQL database, and from that data the conception of a set of functionalities, rules, principles and semantics to select, combine and store in a secondary relational database the meaningful information for the Revenue Management (Big Data Warehouse). The last stage will be the principal focus of the paper. In this context, clues will also be giving how to compile information for Business Intelligence. All these functionalities contribute to a holistic framework that, in the future, will make it possible to anticipate customers and competitor’s behavior, fundamental elements to fulfill the Revenue Management
Resumo:
The Joint Video Team, composed by the ISO/IEC Moving Picture Experts Group (MPEG) and the ITU-T Video Coding Experts Group (VCEG), has standardized a scalable extension of the H.264/AVC video coding standard called Scalable Video Coding (SVC). H.264/SVC provides scalable video streams which are composed by a base layer and one or more enhancement layers. Enhancement layers may improve the temporal, the spatial or the signal-to-noise ratio resolutions of the content represented by the lower layers. One of the applications, of this standard is related to video transmission in both wired and wireless communication systems, and it is therefore important to analyze in which way packet losses contribute to the degradation of quality, and which mechanisms could be used to improve that quality. This paper provides an analysis and evaluation of H.264/SVC in error prone environments, quantifying the degradation caused by packet losses in the decoded video. It also proposes and analyzes the consequences of QoS-based discarding of packets through different marking solutions.