5 resultados para Human right to water
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The undesirable enrichment of water by nutrients may be a problem, especially in areas with restricted exchange with the sea. The tidal regime flushes the system and contributes for the removal of phytoplankton, favouring phytobenthos as the target of enhanced nutrients. Water samples were collected during the years of 2006 and 2007-08 for nutrients, chlorophyll a and dissolved oxygen. Sediment sample s were also collected for pore water nutrients and benthic chlorophyll a. From comparison with previous work, a decrease in the nitrogen concentration in the water column can be pointed out, which may indicate an improvement of the water quality. Pore water DAIN represents approximately 75% of the total DAIN of the whole lagoon. Benthic chlorophyll a concentrations were much larger than in the water column, representing around 99% of the total chlorophyll existent in the lagoon. Benthic microalgae play a relevant role in this system and therefore standard monitoring programs of the WFD, which do not consider this component, may fail to track nutrient-driven changes in primary producers. Dissolved oxygen concentration could be near critical levels during the summer (early in the morning), especially in the inner channels.
Resumo:
Monitoring of coastal and estuarine water quality has been traditionally performed by sampling with subsequent laboratory analysis. This has the disadvantages of low spatial and temporal resolution and high cost. In the last decades two alternative techniques have emerged to overcome this drawback: profiling and remote sensing. Profiling using multi-parameter sensors is now in a commercial stage. It can be used, tied to a boat, to obtain a quick “picture” of the system. The spatial resolution thus increases from single points to a line coincident with the boat track. The temporal resolution however remains unchanged since campaigns and resources involved are basically the same. The need for laboratory analysis was reduced but not eliminated because parameters like nutrients, microbiology or metals are still difficult to obtain with sensors and validation measurements are still needed. In the last years the improvement in satellite resolution has enabled its use for coastal and estuarine water monitoring. Although spatial coverage and resolution of satellite images in the present is already suitable to coastal and estuarine monitoring, temporal resolution is naturally limited to satellite passages and cloud cover. With this panorama the best approach to water monitoring is to integrate and combine data from all these sources. The natural tools to perform this integration are numerical models. Models benefit from the different sources of data to obtain a better calibration. After calibration they can be used to extend spatially and temporally the methods resolution. In Algarve (South of Portugal) a monitoring effort using this approach is being undertaken. The monitoring effort comprises five different locations including coastal waters, estuaries and coastal lagoons. The objective is to establish the base line situation to evaluate the impact of Waste Water Treatment Plants design and retrofitting. The field campaigns include monthly synoptic profiling, using an YSI 6600 multi-parameter system, laboratory analysis and fixed stations. The remote sensing uses ENVISAT\MERIS Level 2 Full Resolution data. This data is combined and used with the MOHID modelling system to obtain an integrate description of the systems. The results show the limitations of each method and the ability of the modelling system to integrate the results and to produce a comprehensive picture of the system.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2007
Resumo:
Dissertação mest., Gestão da Água e da Costa, Universidade do Algarve, 2008
Resumo:
According to the Water Framework Directive (WFD) transitional waters should be differentiated according to type and, in some cases, divided into different water bodies. This raises a dilemma in trying to define parts of a continuum. In the sequence of WFD several indices have been proposed including the Estuarine Fish Assessment Index, which can be applied taking an estuary as a whole (EFAI - without water bodies division) or divided in water bodies (EFAI(WB)). The purpose of this work is to analyze the robustness of the Estuarine Fish Assessment Index, based on three different ways of dividing Portuguese estuaries into water bodies according to different criteria (criterion 1 - distance to the estuary mouth, criterion 2 - salinity and criterion 3 - morphology, salinity and human dimension as pressure and state). In this study we evaluated at which degree these three criteria could influence the ecological quality ratio (EQR) results, when the index was applied to water body level (EFAI(WB)). Also, for each estuary, the EQR(WB) results for each criterion of EFAI(WB) were combined and weighted according to the water bodies areas (EFAI overall weighted - EFAI(Ow)). Finally, it was compared if the results obtained for each criterion with the EFAI(OW) were similar to the results of the index application taking the estuary as a whole (EFAI without water bodies division). No significant differences were found in both cases, which indicated that this index is a robust method regarding the division of the estuaries in different water bodies, which is an important element of a fish-based multimetric tool for assessing estuarine ecological quality. However, in some cases, different ecological quality statuses were achieved when applying the EFAI(Ow) or the EFAI. This work addressed several aspects regarding the possible division of water bodies at the WFD context. (C) 2012 Elsevier Ltd. All rights reserved.