2 resultados para Human Factor Analysis
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Recently there has been an increase of interest in implementing a new set of home appliances, known as Smart Appliances that integrate Information Technologies, the Internet of Things and the ability of communicating with other devices. While Smart Appliances are characterized as an important milestone on the path to the Smart Grid, by being able to automatically schedule their loads according to a tariff or reflecting the power that is generated using renewable sources, there is not a clear understanding on the impact that the behavior of such devices will have in the comfort levels of users, when they shift their working periods to earlier, or later than, a preset time. Given these considerations, in this work we analyse the results of an assessment survey carried out to a group of Home Appliance users regarding their habits when dealing with these machines and the subjective impact in quality caused by either finishing its programs before or after the time limit set by the user. The results of this work are expected to be used as input for the evaluation of load scheduling algorithms running in energy management systems. © 2014 Springer International Publishing.
Resumo:
Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.