5 resultados para Grandmother Model for Vision
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
We are developing a frontend that is based on the image representation in the visual cortex and plausible processing schemes. This frontend consists of multiscale line/edge and keypoint (vertex) detection, using models of simple, complex and end-stopped cells. This frontend is being extended by a new disparity model. Assuming that there is no neural inverse tangent operator, we do not exploit Gabor phase information. Instead, we directly use simple cell (Gabor) responses at positions where lines and edges are detected.
Resumo:
Few models can explain Mach bands (Pessoa, 1996 Vision Research 36 3205-3227) . Our own employs multiscale line and edge coding by simple and complex cells. Lines are interpreted by Gaussian functions, edges by bipolar, Gaussian-truncated errorfunctions. Widths of these functions are coupled to the scales of the underlying cells and the amplitudes are determined by their responses.
Resumo:
Tese de dout., Engenharia Electrónica e de Computadores, Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2007
Resumo:
Attention is usually modelled by sequential fixation of peaks in saliency maps. Those maps code local conspicuity: complexity, colour and texture. Such features have no relation to entire objects, unless also disparity and optical flow are considered, which often segregate entire objects from their background. Recently we developed a model of local gist vision: which types of objects are about where in a scene. This model addresses man-made objects which are dominated by a small shape repertoire: squares, rectangles, trapeziums, triangles, circles and ellipses. Only exploiting local colour contrast, the model can detect these shapes by a small hierarchy of cell layers devoted to low- and mid-level geometry. The model has been tested successfully on video sequences containing traffic signs and other scenes, and partial occlusions were not problematic.
Resumo:
Multi-scale representations of lines, edges and keypoints on the basis of simple, complex and end-stopped cells can be used for object categorisation and recognition (Rodrigues and du Buf, 2009 BioSystems 95 206-226). These representations are complemented by saliency maps of colour, texture, disparity and motion information, which also serve to model extremely fast gist vision in parallel with object segregation. We present a low-level geometry model based on a single type of self-adjusting grouping cell, with a circular array of dendrites connected to edge cells located at several angles.