9 resultados para Generalized Least Squares
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Least squares solutions are a very important problem, which appear in a broad range of disciplines (for instance, control systems, statistics, signal processing). Our interest in this kind of problems lies in their use of training neural network controllers.
Resumo:
Least squares solutions are a very important problem, which appear in a broad range of disciplines (for instance, control systems, statistics, signal processing). Our interest in this kind of problems lies in their use of training neural network controllers.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
The Adaptive Generalized Predictive Control (AGPC) algorithm can be speeded up using parallel processing. Since the AGPC algorithm needs to be fed with the knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
The Adaptive Generalized Predictive Control (GPC) algorithm can be speeded up using parallel processing. Since the GPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
In this paper the parallelization of a new learning algorithm for multilayer perceptrons, specifically targeted for nonlinear function approximation purposes, is discussed. Each major step of the algorithm is parallelized, a special emphasis being put in the most computationally intensive task, a least-squares solution of linear systems of equations.
Resumo:
Dissertação de mest., Qualidade em Análises, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2013