2 resultados para General allocation model

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

UV and visible photoconductivity and electrical features of undoped diamond thin films grown by microwave plasma-assisted chemical vapour deposition (MP-CVD) on silicon and copper substrates are studied. The results are correlated with morphology properties analysed by atomic force microscopy (AFM) and micro-Raman. The photoconductivity presents several bands from 1.8 to 3.8 eV that are dependent on the substrate used to grow the samples in spite of some common bands observed. The J-V curve tin DC) in samples grown on Si has a rectifier behaviour (Schottky emission) in opposition to the samples grown on Cu that have no rectification (SCLC conduction). With these results we can conclude that diamond based optoelectronic devices behaviour is controlled by two kinds of structural defects localized in microcrystal and in its boundaries. A general structure model for the optoelectronic behaviour is discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Montado ecosystem in the Alentejo Region, south of Portugal, has enormous agro-ecological and economics heterogeneities. A definition of homogeneous sub-units among this heterogeneous ecosystem was made, but for them is disposal only partial statistical information about soil allocation agro-forestry activities. The paper proposal is to recover the unknown soil allocation at each homogeneous sub-unit, disaggregating a complete data set for the Montado ecosystem area using incomplete information at sub-units level. The methodological framework is based on a Generalized Maximum Entropy approach, which is developed in thee steps concerning the specification of a r order Markov process, the estimates of aggregate transition probabilities and the disaggregation data to recover the unknown soil allocation at each homogeneous sub-units. The results quality is evaluated using the predicted absolute deviation (PAD) and the "Disagegation Information Gain" (DIG) and shows very acceptable estimation errors.