3 resultados para Fruits - Storage

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The benefits of calcium applications pre and postharvest on fruit storage ability have been mentioned in the bibliography. It was objective of this work to study the effect of calcium preharvest application in two different forms and calcium chloride application postharvest on 'Hayward' kiwifruit storage ability. Kiwifruit vines were sprayed with 0.03% CaCl2 or 0.03% CaO at one, three and four months before harvest. The control did not have any treatment. After harvest, half fruits were dipped for 2 min in a solution of 1% CaCl2, left to dry and stored at 0 degrees C. The other half was stored at the same temperature without any treatment. The commercial yield was not affected by treatments. During storage, fruits dipped in 1% CaCl2 softened slower and than fruits not treated. Weight loss was higher in fruits treated with CaO preharvest. SSC showed a significant decrease in fruits sprayed with CaO from 4 to 6 months storage. This work suggests that immersion of kiwifruit in 1% CaCl2 postharvest benefits storage life capacity; preharvest spraying with CaCl2 seems to be better than with CaO. However, we have to try higher calcium concentrations in order to get better results in storage ability but, without causing toxicity on the vines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that calcium increases storage life of many fruits. This study investigated the effect of vine calcium application, as well as postharvest application on storage behaviour of 'Hayward' kiwifruit. Three applications of 0.03% CaCl2 or CaO were made in June, July and September. After harvest half of the fruit from sprayed vines were dipped in a solution of 2% CaCl2; the other fruit were untreated. All fruit were then stored at 0 degrees C and relative humidity of about 90-95%. Results for fruit of the size range 85-105 g are discussed. Kiwifruit dipped in 2% CaCl2 postharvest maintained higher firmness through storage than undipped fruit, but soluble solids content was only slightly lower after storage. This suggests that postharvest dipping of kiwifruit in 2% CaCl2 benefits storage life. The concentrations of 0.03% CaCl2 (Antistip) or 0.03% CaO (Chelal) used in vine applications seem to be too low and higher concentrations should be tried.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of fresh-cut fruit (FCF) in the marketplace has been increasing in Portugal, although reports of its microbial quality are not known. Due to the growing concerns of these commodities over their microbial safety, the objectives of this work were to study the microbiological quality and prevalence of Salmonella and Listeria monocytogenes on fresh-cut fruits sold in southern Portugal. A study to examine the changes in pH and microbial counts, before and after the expiration dates, was also made. A total of 160 samples was purchased in the local grocery stores between September 2011 and August 2014, before their sell-by date. These samples were assayed for aerobic mesophilic (AM) and psychrotrophic (AP) microorganisms, yeasts and molds (YM), lactic-acid bacteria (LAB), coliforms (TC), Escherichia coli and coagulase positive staphylococci as well as L. monocytogenes and Salmonella. The microbiological counts ranged from 3.0-9.2 lg cfu/g (AM); 2.2–10.7 lg cfu/g (AP); 2.3–10.4 lg cfu/g (YM); 1.9–9.0 lg cfu/g (LAB) and less than 1–9.1 lg cfu/g (TC). The melons and watermelon presented the highest levels of the microbial quality parameters studied. However, no E. coli, staphylococci, Salmonella and L. monocytogenes were detected in any of the samples. After the sell-by date, an increase of the AM, AP, LAB and YM values was observed in all fruits. Conversely, the differences found in TC counts before and after the best-before date had no statistical significance. A decrease in pH was observed in all fruits except pineapple whose pH slightly increased after 14 days of storage. The results highlight the importance of preventing contamination and cross contamination, selecting adequate decontamination technologies and maintaining a strict temperature control during processing, distribution and selling of FCF.