5 resultados para FUZZY INFERENCE SYSTEM

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese dout., Engenharia electrónica e computação - Processamento de sinal, Universidade do Algarve, 2008

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a method of using the so-colled "bacterial algorithm" (4,5) for extracting a fuzzy rule base from a training set. The bewly proposed bacterial evolutionary algorithm (BEA) is shown. In our application one bacterium corresponds to a fuzzy rule system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern measurement and control systems, the available time and resources are often not only limited, but could change during the operation of the system. In these cases, the so-called anytime algorithms could be used advantageously. While diflerent soft computing methods are wide-spreadly used in system modeling, their usability in these cases are limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The normal design process for neural networks or fuzzy systems involve two different phases: the determination of the best topology, which can be seen as a system identification problem, and the determination of its parameters, which can be envisaged as a parameter estimation problem. This latter issue, the determination of the model parameters (linear weights and interior knots) is the simplest task and is usually solved using gradient or hybrid schemes. The former issue, the topology determination, is an extremely complex task, especially if dealing with real-world problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the crucial problems of fuzzy rule modeling is how to find an optimal or at least a quasi-optimal rule base fro a certain system. In most applications there is no human expert available, or, the result of a human expert's decision is too much subjective and is not reproducible, thus some automatic method to determine the fuzzy rule base must be deployed.