4 resultados para FEEDS

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Especialização em Ecologia e Conservação Marinha, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aquaculture industry aims at replacing significant amounts of marine fish oil by vegetable oils in fish diet. Dietary lipids have been shown to alter the fatty acid composition of bone compartments, which would impact the local production of factors controlling bone formation. Knowledge on the mechanisms underlying the nutritional regulation of bone metabolism is however scarce in fish. Two in vitro bone-derived cell systems developed from seabream (an important species for aquaculture in the Mediterranean region) vertebra, capable of in vitro mineralization and exhibiting prechondrocyte (VSa13) and pre-osteoblast (VSa16) phenotype, were used to assess the effect of certain polyunsaturated fatty acids (PUFAs; arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids) on cell proliferation, extracellular matrix (ECM) mineralization and gene expression. While all PUFAs promoted morphological changes in both cell lines, VSa16 cell proliferation appeared to be stimulated by PUFAs in a dose dependent manner until 100M, whereas proliferation of VSa13 cells was impaired at concentrations above 10M. AA, EPA and DHA inhibited VSa13 ECM mineralization, alone and in combination, while VSa16 ECM mineralization was only inhibited by AA and EPA. DHA had the opposite effect, increasing mineralization almost by 2 fold. When EFAs were combined, DHA apparently compensated for the inhibitory effect of AA and EPA. Expression of marker genes for bone and lipid metabolisms has been investigated by qPCR and shown to be regulated in pre-osteoblasts exposed to individual PUFAs. Our results show that PUFAs are effectors of fish bone cell lines, altering cell morphology, proliferation and mineralization when added to culture medium. This work also demonstrates the suitability of our in vitro cell systems to get insights into mineralization-related effects of PUFAs in vivo and to evaluate the replacement of fish oils by vegetable oil sources in fish feeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the European Union the turn towards renewable energy sources has increased the production of biodiesel from rapeseed oil, leaving glycerol (also known as glycerin) as a valuable by-product. For every litre of biodiesel produced, approximately 79 g of crude glycerol are generated. As the biodiesel production grows, the quantity of crude glycerol generated will be considerable and its utilization will become an urgent topic. One possibility is the use of crude glycerol on animal feeds. Glycerol has been evaluated as a dietary energy source for several farm animals, including fish. A study was undertaken to assess the effect of dietary biodiesel-derived glycerol (from rapeseed oil) on the overall growth performance, digestive capacity and metabolic nutrient utilization in juvenile gilthead seabream fed a low fishmeal level diet. Two practical diets were formulated to be isonitrogenous (crude protein, 45.4% DM), isolipidic (18.5% DM) and isoenergetic (gross energy, 21.3 kJ/g DM). The control diet (CTRL) was formulated with intermediate levels of marine-derived proteins (19%). In the same basal formulation, 5% glycerol (GLY) was incorporated at the expenses of wheat. Each dietary treatment was tested in triplicate tanks over 63 days, with 20 gilthead seabream (Sparus aurata), with a mean initial body weight (IBW) of 27.9  0.12 g. At the end of the trial, fish fed the CTRL diet reached a final body weight of 84.3  2.2 g (more than 3-fold increase of initial body weight). Fish fed the GLY diet showed a significantly higher (P<0.05) growth, expressed in terms of final body weight and specific growth rate. Voluntary feed intake was similar between the two treatments, but both feed efficiency and protein efficiency ratio were significantly improved (P<0.05) in fish fed the GLY diet. Dietary glycerol had no effect (P>0.05) on the apparent digestibility of protein. In comparison to the control treatment, dietary glycerol significantly improved (P<0.05) protein and fat retention. Activities of digestive enzymes were significantly affected by the various dietary treatments. Fish fed the GLY diet showed an enhanced activity of alkaline phosphatase (ALP) and pepsin, while activities of lipase and leucine-alanine peptidase (LAP) were little affected by dietary glycerol. Fish show the ability to use crude glycerol as a dietary energy substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study provides the first description of the feeding ecology of the smooth lanternshark Etmopterus pusillus based on stomach contents of specimens caught as bycatch in the Algarve (southern Portugal) with bottom trawling and bottom longline. The diet of E. pusillus consists mainly of fish (dry weight (% W)=87.1%; frequency of occurrence (%FO)=28.6%; number (%N)=30.3%), crustaceans (%W=7.7%; %FO=36.7%; %N=3.4%) and cephalopods (%W=4.7%; %FO=11.3%; %N=11.1%). The diet did not vary between sexes. Ontogenic changes were detected: crustaceans decreased in importance as the sharks increased in size and fish became dominant in the diet of adults. Combining two fishing methods provided broad information on the diet of E. pusillus, as bottom trawling caught smaller specimens and longlines caught larger individuals. E. pusillus feeds mainly on non-commercial species, and therefore does not compete directly with commercial fisheries. Finally, E. pusillus feeds in various parts of the water column and thus it can access a wide range of prey; however, this also means that it can be caught by both gears, making it more vulnerable in terms of conservation.