2 resultados para Endocrinology.
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50–55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the ‘‘classical’’ role of pituitary function regulation.
Resumo:
One of the predictions of the ‘challenge hypothesis’ (Wingfield et al., 1990) is that androgen patterns during the breeding season should vary among species according to the parenting and mating system. Here we assess this prediction of the challenge hypothesis both at the intra- and at the inter-specific level. To test the hypothesis at the inter-specific level, a literature survey on published androgen pat- terns from teleost fish with different mating systems was carried out. The results confirm the predicted effect of mating system on andro- gen levels. To test the hypothesis at an intra-specific level, a species with flexible reproductive strategies (i.e. monogamy vs. polygyny), the Saint Peter’s fish was studied. Polygynous males had higher 11- ketotestosterone levels. However, males implanted with methyl-tes- tosterone did not became polygynous and the variation of the ten- dency to desert their pair mates was better explained by the repro- ductive state of the female partner. This result stresses the point that the effects of behaviour on hormones cannot be considered without respect to the social context.