17 resultados para Elementos finitos : Placas : Estruturas
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Nos últimos anos o estudo de estruturas inteligentes tem atraído vários investigadores devido às suas potenciais vantagens numa larga gama de aplicações, tais como controle de forma, supressão de vibrações, atenuação de ruído e detecção de dano. O uso de materiais “inteligentes” tal como os materiais piezoeléctricos na forma de lâminas ou “patches”, embebidas ou coladas na superfície de estruturas construídas de materiais compósitos, permite assim obter estruturas que por um lado são adaptativas e por outro revelam excelentes propriedades mecânicas, aumentando assim bastante o desempenho e a fiabilidade de sistemas estruturais. Os materiais piezoeléctricos têm a propriedade de gerar uma carga eléctrica sob a acção duma carga mecânica e o reverso, isto é, aplicando um campo eléctrico nos elementos piezoeléctricos da estrutura, esta deforma-se. Neste trabalho, é apresentado um modelo de elementos finitos, baseado na teoria clássica de placas, desenvolvido para a análise do controle activo em estática e dinâmica lineares de estruturas integrando sensores e actuadores piezoeléctrico na forma de lâminas, os quais introduzem um grau de liberdade referente ao potencial eléctrico, por cada camada piezoeléctrica do elemento finito. É utilizado método de Newmark para a solução iterativa das equações de equilíbrio. Apresentam-se os resultados obtidos em três exemplos ilustrativos.
Resumo:
Neste trabalho apresenta-se um modelo de elementos finitos, baseados na teoria clássica das placas, desenvolvido para a análise de controlo activo em dinâmica de estruturas de tipo placa/casca integrando sensores e actuadores piezoeléctricos. O controlo é iniciado através de uma optimização prévia do núcleo laminado de modo a diminuir a amplitude da vibração. É usado um algoritmo de controlo baseado na ligação entre as lâminas piezoeléctricas sensoras e actuadoras para obter um mecanismo de controlo da resposta dinâmica da estrutura. A resolução por elementos finitos usa um elemento placa/casca triangular plano de 3 nós, e em cuja formulação se introduz um grau de liberdade referente ao potencial eléctrico, por cada camada piezoeléctrica do elemento finito. Apresentam-se os resultados obtidos em dois exemplos ilustrativos.
Resumo:
Neste trabalho apresenta-se um modelo de elementos finitos, baseado na teoria clássica de placas, para a análise linear e não-linear de estruturas do tipo placa/casca integrando sensores e actuadores piezoeléctricos. É usado um simples e eficiente elemento placa/casca triangular plano de 3 nós, e em cuja formulação se introduz um grau de liberdade referente ao potencial eléctrico, por cada camada piezoeléctrica do elemento finito. É utilizada a formulação Lagrangeana actualizada associada à tecnica de Newton - Raphson para a solução iterativa das equações de equilibrio .O modelo pode ser aplicado a cascas piezolaminadas com geometria e carregamento arbitrários. Apresentam-se vários exemplos ilustrativos cujos resultados mostram a eficiencia do modelo proposto.
Resumo:
Neste trabalho apresenta-se um modelo de elementos finitos, baseado na teoria clássica de placas, para a análise linear e não-linear de estruturas do tipo placa/casca integrando sensores e actuadores piezoeléctricos. É usado um simples e eficiente elemento placa/casca triangular plano de 3 nós, e em cuja formulação se introduz um grau de liberdade referente ao potencial eléctrico, por cada camada piezoeléctrica do elemento finito. É utilizada a formulação Lagrangeana actualizada associada à tecnica de Newton - Raphson para a solução iterativa das equações de equilibrio .O modelo pode ser aplicado a cascas piezolaminadas com geometria e carregamento arbitrários. Apresentam-se vários exemplos ilustrativos cujos resultados mostram a eficiencia do modelo proposto.
Resumo:
Neste trabalho apresenta-se um modelo de elementos finitos baseado na teoria de deformação de corte de 3ª ordem, o qual é aplicado ao controlo activo de vibrações, incluindo o fenómeno de ressonância, em estruturas laminadas. Sensores e actuadores piezoeléctricos na forma de lâminas estão colocadas na superfície superior e inferior do laminado, permitindo assim um sistema de controlo, ligando os efeitos piézoeléctricos directo e converso, atrvés de um algoritmo baseado na realimentação com velocidade negativa. As estruturas são forçadas a vibrar num determinado modo, e a sua amplitude no tempo é calculada usando o método de Newmark. Apresenta-se uma aplicação ilustrativa.
Resumo:
This paper deals with a third order shear deformation finite element model wich is applied on the active resonance control thin plate/shell laminated structures with integrated piezoelectric layers of patches, acting as sensors and actuators. The finite element model is a single layer tringular nonconforming plate/shell element with 24 degrees of freedom for he generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich are surface bonded on the laminated. The newwork method is considered to calculate the dynamic response of the laminated sructures forced to vibrate in the first natural frequency. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. The model is applied to the solution of one illustrative case, and the results are presented and discussed.
Resumo:
Composite structures incorporating piezoelectric sensors and actuators are increasingly becoming important due to the offer of potential benefits in a wide range of engineering applications such as vibration and noise supression, shape control and precisition positioning. This paper presents a finit element formulation based on classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezsoelectric elementlayer or patch, witch are surface bonded on the laminate. An optimization of the patches position is performed to maximize the piezoelectric actuators efficiency as well as, the electric potential distribuition is search to reach the specified structure transverse displacement distribuition (shape control). A gradient based algorithm is used for this purpose. The model is applied in the optimization of illustrative laminated plate cases, and the results are presented and discussed.
Resumo:
In this paper is presented an higher-order model for static and free vibration analyses of magneto-electro-elastic plates, wich allows the analysis of thin and thick plates, which allows the analysis of thin and thick plates. The finite element model is a single layer triangular plate/shell element with 24 degrees of fredom for the generalized mechanical displacements. Two degrees on freedom are introduced per each element layer, one corresponding to the electrical potential and the other for magnetic potential. Solutions are obtained for different laminations of the magneto-electro-elastic plate, as well as for the purely elastic plate as a special case.
Resumo:
A non-conforming three-node triangular finite element with 18 degree of freedom, is used in conjugation with the Kirchhoff theory for the non-linear analysis of thin composite plate-shell structure. The formulation of the geometrically non-linear analysis is based on an updated Lagrangian formulation associated with the Newton-Raphson iterative technique, which incorporates an automatic arc-length control procedure.
Resumo:
This paper presents a finite element formulation based on the classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators.The finite element model is a single layer trinaguular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element elemenet layer or patch. An optimization of the patches position is perfomed to maximize the piezoelectric actuators efficiency as well as,the electric potential distribution is serach to reach the specified strusctura transverse displacement distribution is search to reach the specified structures trsnsverse displacement distribution (shape control). A gradient based algorithm is used for this purpose.Results are presented and discussed.
Resumo:
This paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.
Resumo:
This paper deals with the geometrically non linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuors or sensors layers and/or patches.The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings. the finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of fredom for the generalized displacements and one eçlectrical potential degree of freedom for each piezoelectric layer or patch. An updated Lagrangian formulation associated to Newton-Raphson technique is used to solve incrementally and iteratively the equilibrium equation.The model is applied in the solution of four illustrative cases, and the results are compared and discussedwith alternative solutions when available.
Resumo:
A finite element formulation for active vibration control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators in presented. The finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric element layer, and is based on the kirchhoff classical laminated theory. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers, and Newmark method is used to calculate yhe dynamic response of the laminated structures. The model is applied in the solution of several illustrative cases, and the results are presented and discussed.
Resumo:
This paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position in performed to maximize the piezoelectric actuator efficiency. the simulating annealing mthod is used for these purposes. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich can be surface bonded or imbedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorirhm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.
Resumo:
Dissertação de mest., Recursos Hídricos, 2007, Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve