6 resultados para Demersal fishes
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Fisheries bycatches and discards constitute a significant problem in many fisheries worldwide. Unlike the pelagic purse-seine, the demersal purse seine usually targets high commercial value demersal species such as sea breams ( e. g., Diplodus spp., Pagellus spp., Sparus aurata) and the European sea bass ( Dicentrarchus labrax), while discards consist mainly of pelagic species and juveniles of the above mentioned species. In order to evaluate the efficiency of a selectivity device in reducing bycatch and consequently of discards in a demersal purse seine fishery, experimental deployments were carried out. The bycatch reducing device (BRD) consisted in the use of a panel of diamond-shaped mesh netting of 70 mm stretched mesh in the posterior part of the purse seine. Data from 61 experimental fishing trials allowed the evaluation of discards, with Scomber japonicus, Boops boops, Sardina pilchardus, Diplodus bellottii and Belone belone being the main discarded species. The mean discard ratio per set was 0.49 (+/- 0.30 standard deviation). The causes for discarding were also identified, with low commercial value being the most important reason. The results of the trials with BRD, were promising, with an average of 49% (+/- 24%) of the fish escaping per set, especially from those species that are most discarded. Overall, the use of this method for reducing discards can be considered positive for the following reasons: there is no need for structural modification of the fishing gear, the BRD is easy to deploy, and it is efficient in terms of species, sizes and quantities of fish that manage to escape. It therefore has significant benefits for the demersal purse seine fishery and possibly for other "metiers" as well.
Resumo:
The selectivity of four hook sizes (STELL brand(1), Quality 2335, numbers 12, 9, 6 and 4) used in a semi-pelagic longline fishery was studied in the Azores. Two species were caught in sufficient numbers for modelling of selectivity: the black spot sea bream (Pagellus bogaraveo) and the bluemouth rockfish (Helicolenus dactylopterus dactylopterus). A maximum likelihood method was used to fit a versatile model which can be used to describe a wide range of selectivity curves; from bell-shaped to asymptotic. Significant differences in size selectivity between hooks were found for both species. In the case of Pagellus bogaraveo, the smallest hook (number 12) had the lowest catch rates and all hooks were characterised by logistic-type selectivity curves, with sizes at 50% selectivity of: 27.9, 30.4, and 32.8 cm for hooks numbers 12, 9 and 6, respectively. The number 9 hook was the most efficient for Helicolenus d. dactylopterus, with selectivity curves varying from strongly skewed to the right for the number 12 hook to logistic-type for the numbers 6 and 4 hooks. Sizes at 50% selectivity for this species were 16.8, 18.7, 20.7, and 22.0 cm. respectively. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
There is a concern that artificial reefs (AR) may act purely as fishing aggregation devices. Predators attracted to ARs can influence the distribution and abundance of prey fish species. Determining the role of predators in AR is important in advancing the understanding of community interactions. This paper documents the effects of predation on fish assemblages of AR located near a coastal lagoon fish nursery. The Dicentrarchus labrax is a very opportunistic species preying on juveniles (0(+) and 1(+) age classes) of several demersal fish species on the ARs. Reef prey and sea bass abundance were negatively correlated. The mean numbers of prey per sea bass stomach increased with the increase of reef fish prey abundance, suggesting that predation has a significant influence, resulting in a decrease in prey abundance. Prey mortality (4-48%) of demersal reef fish associated species depends on bass density. Prey selection was related both with prey abundance and vulnerability. Results showed that D. labrax predation on AR-fish associated species can increase prey natural mortality. However, the role of bass predation on the ecological functioning of exploited ARs is not clear. There may be increases in local fishing yields due either to an increase in predator biomass through aggregation of sea bass attracted to ARs or to greater production. In contrast, predation on juveniles of economically important reef fish preys, especially the most frequent and abundant (Boops boops), can contribute to a decrease in recruitment to the fishery. Our results indicate that inter-specific interactions (predator-prey) are important in terms of conservation and management, as well as for the evaluation of the long-term effects of reef deployment. Thus, it is necessary to consider ecological interactions, such as predation, prior to the development and deployment of artificial habitats as a tool for rehabilitation.
Resumo:
1. A 2-year experimental seining programme and underwater visual censuses were undertaken to quantify the direct effects of active demersal fishing on the population structure and relative abundance of two sympatric seahorse species of conservation concern: the European long-snouted seahorse, Hippocampus guttulatus Cuvier 1829 and the short-snouted seahorse, Hippocampus hippocampus L. The influence of habitat preference on population-level responses to changes in habitat structure following a reduction in fishing effort was also investigated. 2. It was predicted that the benthic habitat would be more structurally complex after fishing ceased and that seahorse densities would increase in response to reduced fishing mortality. Furthermore, it was predicted that the magnitude of the increase in density would be greater for H. guttulatus than for H. hippocampus, because the former species prefers complex vegetated habitats while the latter species uses sparsely vegetated habitats. 3. As predicted, the amount of habitat cover increased significantly when seining ceased, primarily through increases in the abundance of drifting macroalgae and unattached invertebrates. Despite similarities in life histories, the two seahorse species responded differently in terms of magnitude and direction to reduced fishing effort: the abundance of H. guttulatus increased significantly while H. hippocampus decreased in abundance. 4. Results suggest that active demersal fishing may influence the magnitude and direction of the responses of benthic marine fishes to exploitation through its impacts on habitat structure. An increase in habitat cover appeared to favour higher densities of H. guttulatus when seining effort was reduced. By contrast, repeated seining, which maintained less complex habitats, appeared to favour greater abundances of H. hippocampus. 5. Given differences in habitat preference among benthic marine fishes subject to incidental capture in fisheries, simultaneous attempts to manage populations of sympatric species may require complementary strategies that support the persistence of diverse habitat types. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Benefits of marine protected areas depend on local ecological and socio-cultural aspects which are critical to the success of the protection measures. In particular, before-after comparisons are indispensable to disentangle the effects of protection from those of different physical and ecological characteristics among areas. Using underwater visual surveys, we assessed whether biomass and abundance of temperate reef fish assemblages and target invertebrates increased inside a no-take area in the Arrabida Marine Park (Portugal) 3 to 4 yr after its establishment. Data were compared to a previous study, conducted 10 yr before protection was effective. Control-effect comparisons after reserve establishment showed a positive response of legal-size demersal fish and below legal-size target invertebrates. The first evidence of protection was found in biomass but not in numbers. Non-target groups and below legal-size demersal fish had a significant interaction among reserve and habitat complexity indices for either density or biomass, suggesting a lack of a reserve effect. Before-after comparisons revealed non-significant patterns of increase in numbers of target species compared to non-target ones. The most important commercial species showed the largest increase in density after protection was established. Significantly higher abundances and proportionally heavier individuals of these species were also found inside the reserve in the control-effect comparisons. These findings are reinforced by an increasing trend in landings which are consistent with the early detection of a reserve effect.
Resumo:
We examined the effects of different hook style and bait type combinations on the catches of targeted, bycatch, and discarded fishes in equatorial Atlantic waters. In total, 221 longline sets (>305,000 hooks) were deployed from Portuguese pelagic longline vessels (SELECT -PAL Project) during the February–October fishing season. Three different hook styles and two bait types were tested: the traditional J-hook was compared to two circle hooks (one non-offset and one with 10° offset), and squid bait was compared to mackerel. Catch per unit effort (CPU Es) were calculated and compared between the different hook style and bait type combinations, which indicated that the effects of hook style and bait on the CPU Es were species-specific. For example, swordfish CPU Es were higher with J-hooks baited with squid, while for targeted tunas and blue shark only the bait effect was significant, but with opposite effect (i.e., higher catches of tuna with squid bait and higher catches of blue shark with mackerel bait). For the discarded species, at-haulback mortality was also species-specific. Proportions of alive vs dead specimens at time of fishing gear retrieval did not vary significantly by hook style or bait type combinations. The total retained catch was analyzed in value per unit effort (VPU E), and indicated losses in fishery revenue when mackerel was used instead of squid, but not when circle hooks were used instead of J-hooks.