1 resultado para Data pre-processing
em SAPIENTIA - Universidade do Algarve - Portugal
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (37)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (37)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (31)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- Cambridge University Engineering Department Publications Database (15)
- CentAUR: Central Archive University of Reading - UK (28)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (14)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (13)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (20)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (76)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (9)
- Nottingham eTheses (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (11)
- Publishing Network for Geoscientific & Environmental Data (8)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (204)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (32)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (56)
- University of Queensland eSpace - Australia (12)
- University of Southampton, United Kingdom (4)
- University of Washington (3)
- WestminsterResearch - UK (4)
Resumo:
Evaluation of blood-flow Doppler ultrasound spectral content is currently performed on clinical diagnosis. Since mean frequency and bandwidth spectral parameters are determinants on the quantification of stenotic degree, more precise estimators than the conventional Fourier transform should be seek. This paper summarizes studies led by the author in this field, as well as the strategies used to implement the methods in real-time. Regarding stationary and nonstationary characteristics of the blood-flow signal, different models were assessed. When autoregressive and autoregressive moving average models were compared with the traditional Fourier based methods in terms of their statistical performance while estimating both spectral parameters, the Modified Covariance model was identified by the cost/benefit criterion as the estimator presenting better performance. The performance of three time-frequency distributions and the Short Time Fourier Transform was also compared. The Choi-Williams distribution proved to be more accurate than the other methods. The identified spectral estimators were developed and optimized using high performance techniques. Homogeneous and heterogeneous architectures supporting multiple instruction multiple data parallel processing were essayed. Results obtained proved that real-time implementation of the blood-flow estimators is feasible, enhancing the usage of more complex spectral models on other ultrasonic systems.