2 resultados para Coordination of intersections
em SAPIENTIA - Universidade do Algarve - Portugal
Solid-state NMR and powder XRD studies of the structure of SAPO-40 upon hydration-dehydration cycles
Resumo:
It is well known that after the removal of the template many porous aluminophosphates and related materials are very sensitive to water.' Depending on the type of structure, reversible or irreversible phase transitions, loss of crystallinity and changes in the coordination of some framework A1 upon rehydration are observed. For example, solid-state NMR shows that the rehydration of SAPO-5 leads to the formation of octahedral Al. Subsequent dehydration restores the initial tetrahedral coordination of Al. Template-free SAPO-37 becomes totally amorphous to X-rays after exposure to water and stays so after subsequent thermal treatment^.,,^ In contrast, Barthomeuf and co-workers have shown recently, that, on hydration, template-free SAPO-34, an analogue of chabasite, shows the opening of some Si-0-A1 bonds, the effect being reversible upon dehydrati~n.T~h e hydrated distorted structure was found to be stable for months with no further modifications and the ordered material could be regenerated by removal of water. Here we wish to report that the structure of template-free SAPO-40 undergoes a similar reversible modification.
Resumo:
Cardiogenesis is a delicate and complex process that requires the coordination of an intricate network of pathways and the different cell types. Therefore, understanding heart development at the morphogenetic level is an essential requirement to uncover the causes of congenital heart disease and to provide insight for disease therapies. Mouse Cerberus like 2 (Cerl2) has been defined as a Nodal antagonist in the node with an important role in the Left-Right (L/R) axis establishment, at the early embryonic development. As expected, Cerl2 knockout mice (Cerl2-/-) showed multiple laterality defects with associated cardiac failure. In order to identify the endogenous role of Cerl2 during heart formation independent of its described functions in the node, we accurately analyzed animals where laterality defects were not present. We thereby unravel the consequences of Cerl2 lossof- function in the heart, namely increased left ventricular thickness due to hyperplasia of cardiomyocytes and de-regulated expression of cardiac genes. Furthermore, the Cerl2 mutant neonates present impaired cardiac function. Once that the cardiac expression of Cerl2 is mostly observed in the left ventricle until around midgestration, this result suggest a specific regulatory role of Cerl2 during the formation of the left ventricular myoarchitecture. Here, we present two possible molecular mechanisms underlying the cardiac Cerl2 function, the regulation of Cerl2 antagonist in activation of the TGFßs/Nodal/Activin/Smad2 signaling identified by increased Smad2 phosphorilation in Cerl2-/- hearts and the negative feedback between Cerl2 and Wnt/ß-catenin signaling in heart formation. In this work and since embryonic stem cells derived from 129 mice strain is extensively used to produce targeted mutants, we also present echocardiographic reference values to progressive use of juveniles and young adult 129/Sv strain in cardiac studies. In addition, we investigate the cardiac physiology of the surviving Cerl2 mutants in 129/Sv background over time through a follow-up study using echocardiographic analysis. Our results revealed that Cerl2-/- mice are able to improve and maintain the diastolic and most of systolic cardiac physiologic parameters as analyzed until young adult age. Since Cerl2 is no longer expressed in the postnatal heart, we suggest that an intrinsic and compensatory mechanism of adaptation may be active for recovering the decreased cardiac function found in Cerl2 mutant neonates. Altogether, these data highlight the role of Cerl2 during embryonic heart development in mice. Furthermore, we also suggest that Cerl2-/- may be an interesting model to uncover the molecular, cellular and physiological mechanisms behind the improvement of the cardiac function, contributing to the development of therapeutic approaches to treat heart failures.