3 resultados para Congenital Deafness
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Understanding heart development on a molecular level is a requirement for uncovering the causes of congenital heart diseases. Several genes have been implicated as critical for heart development. However, the inducers of these genes as well as their targets and pathways, remain largely unknown. We have identified a promoter element of chick cCer able to drive EGFP expression in a population of cells that consistently exit from the anterior primitive streak region, from as early as stage HH3+, and that later will populate the heart. Using this promoter element as a tool allowed us to identify novel genes previously not known to potentially play a role in heart development. In order to identify and study genes expressed and involved in the correct development and differentiation of the vertebrate heart precursor cell (HPC) lineages, a differential screening using Affymetrix GeneChip® system technologies was performed. Remarkably, this screening led to the identification of more than 700 transcripts differentially expressed in the heart forming regions (HFR). Bioinformatic tools allowed us to filter the large amount of data generated from this approach and to select a few transcripts for in vivo validation. Five genes were selected for further characterization by whole mount in situ hybridization leading to the validation of their expression in the HPC. From those, Adtk1 and Ccbe1 were selected for functional analysis. Regarding to ccbe1, a more detailed WISH analysis was performed and showed that Ccbe1 is expressed specifically on the cardiac progenitors regions at HH4, more specifically in primary heart field and at later stages is present in the second heart field. Further functional analyses by knockdown and overexpression revealed an important role for Ccbe1 in early heart tube formation. Moreover, the results presented in this thesis suggested that Ccbe1 is a key gene during heart development and might be limited to multipotent and highly proliferative progenitors and downregulated upon cellular commitment into more specific cardiac phenotypes. Other of the genes identified, Adtk1 was also subjected to further functional studies. Knockdown of Adtk1 using morpholino oligonucleotides suggested that it might be necessary for the migration and fusion of the heart tube as well as for neural tube closure.
Resumo:
The vertebral column and its units, the vertebrae, are fundamental features, characteristic of all vertebrates. Developmental segregation of the vertebral bodies as articulated units is an intrinsic requirement to guarantee the proper function of the spine. Whenever these units become fused either during development or postsegmentation, movement is affected in a more or less severe manner, depending on the number of vertebrae affected. Nevertheless, fusion may occur as part of regular development and as a physiological requirement, like in the tetrapod sacrum or in fish posterior vertebrae forming the urostyle. In order to meet the main objective of this PhD project, which aimed to better understand the molecular and cellular events underlying vertebral fusion under physiological and pathological conditions, a detailed characterization of the vertebral fusion occurring in zebrafish caudal fin region was conducted. This showed that fusion in the caudal fin region comprised 5 vertebral bodies, from which, only fusion between [PU1++U1] and ural2 [U2+] was still traceable during development. This involved bone deposition around the notochord sheath while fusion within the remaining vertebral bodies occur at the level of the notochord sheath, as during the early establishment of the vertebral bodies. A comparison approach between the caudal fin vertebrae and the remaining vertebral column showed conserved features such as the presence of mineralization related proteins as Osteocalcin were identified throughout the vertebral column, independently on the mineralization patterns. This unexpected presence of Osteocalcin in notochord sheath, here identified as Oc1, suggested that this gene, opposing to Oc2, generally associated with bone formation and mature osteoblast activity, is potentially associated with early mineralization events including chordacentrum formation. Nevertheless, major differences between caudal fin region and anterior vertebral bodies considering arch histology and mineralization patterns, led us to use RA as an inductive factor for vertebral fusion, allowing a direct comparison of equivalent structures under normal and fusion events. This fusion phenotype was associated with notochord sheath ectopic mineralization instead of ectopic perichordal bone formation related with increased osteoblast activity, as suggested in previous reports. Additionally, alterations in ECM content, cell adhesion and blood coagulation were discussed as potentially related with the fusion phenotype. Finally, Matrix gla protein, upregulated upon RA treatment and shown to be associated with chordacentrum mineralization sites in regular development, was further described considering its potential function in vertebral formation and pathological fusion. Therefore with this work we propose zebrafish caudal fin vertebral fusion as a potential model to study both congenital and postsegmentation fusion and we present candidate factors and genes that may be further explored in order to clarify whether we can prevent vertebral fusion.
Resumo:
Cardiogenesis is a delicate and complex process that requires the coordination of an intricate network of pathways and the different cell types. Therefore, understanding heart development at the morphogenetic level is an essential requirement to uncover the causes of congenital heart disease and to provide insight for disease therapies. Mouse Cerberus like 2 (Cerl2) has been defined as a Nodal antagonist in the node with an important role in the Left-Right (L/R) axis establishment, at the early embryonic development. As expected, Cerl2 knockout mice (Cerl2-/-) showed multiple laterality defects with associated cardiac failure. In order to identify the endogenous role of Cerl2 during heart formation independent of its described functions in the node, we accurately analyzed animals where laterality defects were not present. We thereby unravel the consequences of Cerl2 lossof- function in the heart, namely increased left ventricular thickness due to hyperplasia of cardiomyocytes and de-regulated expression of cardiac genes. Furthermore, the Cerl2 mutant neonates present impaired cardiac function. Once that the cardiac expression of Cerl2 is mostly observed in the left ventricle until around midgestration, this result suggest a specific regulatory role of Cerl2 during the formation of the left ventricular myoarchitecture. Here, we present two possible molecular mechanisms underlying the cardiac Cerl2 function, the regulation of Cerl2 antagonist in activation of the TGFßs/Nodal/Activin/Smad2 signaling identified by increased Smad2 phosphorilation in Cerl2-/- hearts and the negative feedback between Cerl2 and Wnt/ß-catenin signaling in heart formation. In this work and since embryonic stem cells derived from 129 mice strain is extensively used to produce targeted mutants, we also present echocardiographic reference values to progressive use of juveniles and young adult 129/Sv strain in cardiac studies. In addition, we investigate the cardiac physiology of the surviving Cerl2 mutants in 129/Sv background over time through a follow-up study using echocardiographic analysis. Our results revealed that Cerl2-/- mice are able to improve and maintain the diastolic and most of systolic cardiac physiologic parameters as analyzed until young adult age. Since Cerl2 is no longer expressed in the postnatal heart, we suggest that an intrinsic and compensatory mechanism of adaptation may be active for recovering the decreased cardiac function found in Cerl2 mutant neonates. Altogether, these data highlight the role of Cerl2 during embryonic heart development in mice. Furthermore, we also suggest that Cerl2-/- may be an interesting model to uncover the molecular, cellular and physiological mechanisms behind the improvement of the cardiac function, contributing to the development of therapeutic approaches to treat heart failures.