11 resultados para Coastal and marine ecosystems
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Brackish water ecosystems are often exposed to wide variations in environmental variables, including temperature and salinity, which may cause strong selective pressures on organisms modifying the genetic patterns of species. The aim of this work was to test whether there is a ‘divergence-with-gene flow’ in coastal lagoon populations of white seabream (Diplodus sargus) (Ria Formosa, S Portugal and Mar Menor, SE Spain) respect to four marine populations, by using partial sequences of cyt b mitochondrial gene and information from nine microsatellite loci. Genetic diversity was highest in both coastal lagoons (Mar Menor and Ria Formosa) considering mitochondrial and nuclear markers. Although some of FST population pairwise comparisons were not significant, analyses of molecular variance (AMOVAs) detected differences between groups (coastal lagoon and marine) close to significance. Also, only two haplotypes (Cytb-17 and Cytb-18) were detected in both coastal lagoon sampling sites and these localities (Mar Menor and Ria Formosa) showed the highest number of singletons, some of them with a high number of mutations, as has been already described for other Mar Menor populations (Pomatochistus marmoratus and Holothuria polii). Also, several tests detected significant positive and balancing selection considering mtDNA and microsatellite data. These data support the hypothesis of selection as one of the drivers of the genetic differences found between coastal lagoon and marine populations. The life strategy adopted by Diplodus sargus in coastal lagoons allows it to decrease its mortality rate and improve the heritability of its genes. Also, the increase time spent in coastal lagoons with different temperatures and salinities favours the fitness selection and the maintenance of exclusive haplotypes and genotypes in coastal lagoon inhabitants favouring the ‘divergence-with-gene-flow’.
Resumo:
Tese de Doutoramento, Ecologia, Especialidade de Ecofisiologia, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007
Resumo:
Coastal lagoons are considered one of the most productive areas of our planet harboring a large variety of habitats. Their transitional character, between terrestrial and marine environments, creates a very particular ecosystem with important variations of its environmental conditions. The organisms that are able to survive on these ecosystems frequently experience strong selective pressures and constrictions to gene flowwith marine populations, which could contribute to genetic divergence among populations inhabiting coastal lagoon and marine environments. Therefore, the main aims of this study are to asses the genetic diversity and population structure of Holothuria arguinensis across geographical ranges, to test the hypothesis of coastal lagoons as hotspots of genetic diversity in the Ria Formosa lagoon, and to determine the role of exporting standing genetic variation from the lagoon to open sea and their implications to recent geographical expansion events. To reach these objectives, we investigate the genetic structure of H. arguinensis using two mitochondrial DNA markers (COI and 16S) at different spatial scales: i) small, inside Ria Formosa coastal lagoon, South Portugal; 2) large, including most of the geographical distribution of this species (South and Western Portuguese coast and Canary islands); these results will allow us to compare the genetic diversity of lagoonal and marine populations of H. arguinensis. On this framework, its recent geographical expansion events, recorded by Rodrigues (2012) and González-Wangüemert and Borrero-Pérez (2012), will be analyzed considering the potential contribution from lagoonal genetic pool. Non-significant genetic structure and high haplotypic diversity were found inside the Ria Formosa coastal lagoon. Both genes were unable to detect significant genetic differentiation among lagoonal and marine localities, suggesting a high rate of gene flow. The results supported our hypotheses that coastal lagoons are not only acting as hotspots of genetic diversity, but also contributing for the genetic variability of the species, working as a source of new haplotypes and enhancing adaptation to the high variable conditions. Different genetic patterns of colonization were found on H. arguinensis, but they must be studied more deeply.
Resumo:
Ecohydrology is a scientific concept applied to problem- solving in environmental issues. It recognises that the present practice of relying nearly exclusively on engineering fixes to solve environmental problems is failing to restore the aquatic environment to a level that can sustain the quality of life that people are demanding. Ecohydrology is based on the ability of science to quantify and explain the relationships between hy- drological processes and biotic dynamics at a catchment scale and to manipulate these processes to increase the robustness of the aquatic system and thus its ability to cope with human- induced stresses. The concept was developed by the UNESCO International Hydrologic Programme (IHP) and the Man and Biosphere Programme (MAB).
Resumo:
Regions of Restricted Exchange (RREs) are an important feature of the European coastline. They are historically preferred sites for human settlement and aquaculture and their ecosystems, and consequent human use, may be at risk from eutrophication. The OAERRE project (EVK3-CT1999-0002 concerns ‘Oceanographic Applications to Eutrophication in Regions of Restricted Exchange’. It began in July 2000, and studies six sites. Four of these sites are fjords: Kongsfjorden (west coast of Spitzbergen); Gullmaren (Skagerrak coast of Sweden); Himmerfj.arden (Baltic coast of Sweden); and the Firth of Clyde (west coast of Scotland). Two are bays sheltered by sand bars: Golfe de Fos (French Mediterranean); and Ria Formosa (Portuguese Algarve). Together they exemplify a range of hydrographic and enrichment conditions. The project aims to understand the physical, biogeochemical and biological processes, and their interactions, that determine the trophic status of these coastal marine RRE through the development of simple screening models to define, predict and assess eutrophication. This paper introduces the sites and describes the component parts of a basic screening model and its application to each site using historical data. The model forms the starting point for the OAERRE project and views an RRE as a well-mixed box, exchanging with the sea at a daily rate E determined by physical processes, and converting nutrient to phytoplankton chlorophyll at a fixed yield q: It thus uses nutrient levels to estimate maximum biomass; these preliminary results are discussed in relation to objective criteria used to assess trophic status. The influence of factors such as grazing and vertical mixing on key parameters in the screening model are further studied using simulations of a complex‘research’ model for the Firth of Clyde. The future development of screening models in general and within OAERRE in particular is discussed. In addition, the paper looks ahead with a broad discussion of progress in the scientific understanding of eutrophication and the legal and socioeconomic issues that need to be taken into account in managing the trophic status of RREs.
Resumo:
This special issue of Estuarine, Coastal and Shelf Science synthesizes and updates the developments in science related to Land Ocean Interactions in the Coastal Zone (LOICZ). Frequent updates about the dynamic coastal zone are useful and necessary as global change accelerates. There is an urgent need to improve the knowledge and understanding of the vulnerability of society and ecosystems to global change hazards in the coastal zone (Vermaat et al., 2005). The collection of papers in this special issue places new developments, findings, techniques and insights within the context of LOICZ science. For the convenience of the reader, the references to papers included in this special issue are printed in italic, whereas other references to LOICZ science are in normal print.
Resumo:
Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species.
Resumo:
Studies concerning marine litter have received great attention over the last several years by the scientific community mainly due to their ecological and economic impacts in marine ecosystems, from coastal waters to the deep ocean seafloor. The distribution, type and abundance of marine litter in Ormonde and Gettysburg, the two seamounts of Gorringe Bank, were analyzed from photo and video imagery obtained during ROV-based surveys carried out at 60–3015 m depths during the E/V Nautilus cruise NA017. Located approximately 125 nm southwest of Portugal, Gorringe Bank lays at the crossroad between the Atlantic and the Mediterranean and is therefore characterized by an intense maritime traffic and fishing activities. The high frequency of lost or discarded fishing gear, such as cables, longlines and nets, observed on Gorringe Bank suggests an origin mostly fromfishing activities,with a clear turnover in the type of litter (mostly metal, glass and to amuch lesser extent, plastic) with increasing depth. Litter was more abundant at the summit of Gorringe Bank (ca. 4 items·km−1), decreasing to less than 1 item·km−1 at the flanks and to ca. 2 items·km−1 at greater depths. Nevertheless, litter abundance appeared to be lower than in continental margin areas. The results presented herein are a contribution to support further actions for the conservation of vulnerable habitats on Gorringe Bank so that they can continue contributing to fishery productivity in the surrounding region.
Resumo:
Monitoring of coastal and estuarine water quality has been traditionally performed by sampling with subsequent laboratory analysis. This has the disadvantages of low spatial and temporal resolution and high cost. In the last decades two alternative techniques have emerged to overcome this drawback: profiling and remote sensing. Profiling using multi-parameter sensors is now in a commercial stage. It can be used, tied to a boat, to obtain a quick “picture” of the system. The spatial resolution thus increases from single points to a line coincident with the boat track. The temporal resolution however remains unchanged since campaigns and resources involved are basically the same. The need for laboratory analysis was reduced but not eliminated because parameters like nutrients, microbiology or metals are still difficult to obtain with sensors and validation measurements are still needed. In the last years the improvement in satellite resolution has enabled its use for coastal and estuarine water monitoring. Although spatial coverage and resolution of satellite images in the present is already suitable to coastal and estuarine monitoring, temporal resolution is naturally limited to satellite passages and cloud cover. With this panorama the best approach to water monitoring is to integrate and combine data from all these sources. The natural tools to perform this integration are numerical models. Models benefit from the different sources of data to obtain a better calibration. After calibration they can be used to extend spatially and temporally the methods resolution. In Algarve (South of Portugal) a monitoring effort using this approach is being undertaken. The monitoring effort comprises five different locations including coastal waters, estuaries and coastal lagoons. The objective is to establish the base line situation to evaluate the impact of Waste Water Treatment Plants design and retrofitting. The field campaigns include monthly synoptic profiling, using an YSI 6600 multi-parameter system, laboratory analysis and fixed stations. The remote sensing uses ENVISAT\MERIS Level 2 Full Resolution data. This data is combined and used with the MOHID modelling system to obtain an integrate description of the systems. The results show the limitations of each method and the ability of the modelling system to integrate the results and to produce a comprehensive picture of the system.
Resumo:
Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidadde do Algarve, 2015