6 resultados para Bombing and gunnery ranges.
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Climate change scenarios comprise significant modifications of the marine realm, notably ocean acidification and temperature increase, both direct consequences of the rising atmospheric CO2 concentration. These changes are likely to impact marine organisms and ecosystems, namely the valuable seagrass-dominated coastal habitats. The main objective of this thesis was to evaluate the photosynthetic and antioxidant responses of seagrasses to climate change, considering CO2, temperature and light as key drivers of these processes. The methodologies used to determine global antioxidant capacity and antioxidant enzymatic activity in seagrasses were optimized for the species Cymodocea nodosa and Posidonia oceanica, revealing identical defence mechanisms to those found in terrestrial plants. The detailed analysis and identification of photosynthetic pigments in Halophila ovalis, H.stipulacea, Zostera noltii, Z marina, Z. capricorni, Cymodocea nodosa and Posidonia oceanica, sampled across different climatic zones and depths, also revealed a similarity with terrestrial plants, both in carotenoid composition and in the pigment-based photoprotection mechanisms. Cymodocea nodosa plants from Ria Formosa were submitted to the combined effect of potentially stressful light and temperature ranges and showed considerable physiological tolerance, due to the combination of changes in the antioxidant system, activation of the VAZ cycle and accumulation of leaf soluble sugars, thus preventing the onset of oxidative stress. Cymodocea nodosa plants living in a naturally acidified environment near submarine volcanic vents in Vulcano Island (Italy) showed to be under oxidative stress despite the enhancement of the antioxidant capacity, phenolics concentration and carotenoids. Posidonia oceanica leaves loaded with epiphytes showed a significant increase in oxidative stress, despite the increase of antioxidant responses and the allocation of energetic resources to these protection mechanisms. Globally, the results show that seagrasses are physiologically able to deal with potentially stressful conditions from different origins, being plastic enough to avoid stress in many situations and to actively promote ulterior defence and repair mechanisms when under effective oxidative stress.
Resumo:
A 2-year study of the European hake (Merluccius merluccius) semi-pelagic ("pedra-bola) longline fishery was carried out in the Algarve (southern Portugal). This fishery takes place on the continental slope at 200-700 m depths. using monofilament longlines that are lifted off the bottom at regular intervals by glass balls. Hook selectivity trials were carried out with four hook sizes (SIAPAL brand numbers 10, 9, 7 and 5) from March to August 1997 and May to August 1998. At least 32 species of fish and invertebrates were caught, with hake dominating the catch (41 and 45% of the catch in numbers), followed by Galeus melastomus (23 and 19%), Micromesistius poutassou (10 and 7%), Benthodesmus elongatus (8 and 5%), Etmopterus pusillus (6 and 9%) and Scyliorhinus canicula (5 and 4%). Apart from the hake, and some species of commercial value such as G. melastomus (only the large individuals), Ray's bream (Brama brama, 1.4 and 4%), silver scabbard fish (Lepidopus caudatus. 1 and 2.5%), swordfish (Xiphins gladius, <1%), wreckfish (Polyprion americanus, <1%). conger eel (Conger conger. <1%), and bluemouth rockfish (Helicolenus dactylopterus, <1%)- most of the other species are discarded, used as bait in traps or consumed by the fishermen. Catch rates (number of fish per 100 hooks) for hake and for all species combined decreased significantly with hook size. Hake catch size frequency distributions for the different hook sizes in 1997 and 1998 were highly overlapped, with the four different hooks catching a wide range of sizes. Although catch size frequency distributions for the different sized hooks were not significantly different in 1997, hake caught in 1998 were characterised by smaller sizes and size ranges. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This thesis revealed the most importance factors shaping the distribution, abundance and genetic diversity of four marine foundation species. Environmental conditions, particularly sea temperatures, nutrient availability and ocean waves, played a primary role in shaping the spatial distribution and abundance of populations, acting on scales varying from tens of meters to hundreds of kilometres. Furthermore, the use of Species Distribution Models (SDMs) with biological records of occurrence and high-resolution oceanographic data, allowed predicting species distributions across time. This approach highlighted the role of climate change, particularly when extreme temperatures prevailed during glacial and interglacial periods. These results, when combined with mtDNA and microsatellite genetic variation of populations allowed inferring for the influence of past range dynamics in the genetic diversity and structure of populations. For instance, the Last Glacial Maximum produced important shifts in species ranges, leaving obvious signatures of higher genetic diversities in regions where populations persisted (i.e., refugia). However, it was found that a species’ genetic pool is shaped by regions of persistence, adjacent to others experiencing expansions and contractions. Contradicting expectations, refugia seem to play a minor role on the re(colonization) process of previously eroded populations. In addition, the available habitat area for expanding populations and the inherent mechanisms of species dispersal in occupying available habitats were also found to be fundamental in shaping the distributions of genetic diversity. However, results suggest that the high levels of genetic diversity in some populations do not rule out that they may have experienced strong genetic erosion in the past, a process here named shifting genetic baselines. Furthermore, this thesis predicted an ongoing retraction at the rear edges and extinctions of unique genetic lineages, which will impoverish the global gene pool, strongly shifting the genetic baselines in the future.
Resumo:
Tese dout., Química, Universidade do Algarve, 2005
Resumo:
Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping species’ distribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.
Resumo:
The study of investigating the spatial and temporal variability of macroinvertebrate and their relation to hydrology, hydraulic and environmental factors was done along the Sigi River during two sampling periods in the dry (March) and wet (May) periods of 2012. The river was demarcated based on slope ranges and five river zones were identified as mountains streams (MS), upper foothills (UF), lower foothills (LF), rejuvenated foothills (REJ) and mature lower river (MR). Samples of macroinvertebrate were collected from the five river zones and measurements of hydrological (discharge), hydraulics (Depth, velocity and Froude number) and Environmental (pH, Temperature, substrate, conductivity) parameters were done in each zone. In characterizing the macroinvertebrate assemblages along the Sigi River diversity indices (number of taxa, total abundances, Margalef richness index and ShannonWiener index) were calculated and the most representative species for the spatial and temporal variation were identified. Melanoides and Afronurous showed differences in abundance in two samplings periods while Cleopatra, Potamonautes, Ephemerythus, Neoperla, Caenis, Ceratogomphus and Cheumatopsyche showed significant difference among the river zones. Spearman rank correlation and Distance Linear Model (DistLM) used to revealed physical factors governing the macroinvertebrate assemblages distribution. The study demonstrated that the variation of physical factors like discharge, temperature, conductivity and pH have an important role in the spatial distribution of macroinvertebrate assemblages along the river and the life cycle of macroinvertebrate (Afronurus) is important in determining the temporal variability.