6 resultados para Blue shark, Mediterranean phylogeography demography, mtDNA
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
We examined the effects of different hook style and bait type combinations on the catches of targeted, bycatch, and discarded fishes in equatorial Atlantic waters. In total, 221 longline sets (>305,000 hooks) were deployed from Portuguese pelagic longline vessels (SELECT -PAL Project) during the February–October fishing season. Three different hook styles and two bait types were tested: the traditional J-hook was compared to two circle hooks (one non-offset and one with 10° offset), and squid bait was compared to mackerel. Catch per unit effort (CPU Es) were calculated and compared between the different hook style and bait type combinations, which indicated that the effects of hook style and bait on the CPU Es were species-specific. For example, swordfish CPU Es were higher with J-hooks baited with squid, while for targeted tunas and blue shark only the bait effect was significant, but with opposite effect (i.e., higher catches of tuna with squid bait and higher catches of blue shark with mackerel bait). For the discarded species, at-haulback mortality was also species-specific. Proportions of alive vs dead specimens at time of fishing gear retrieval did not vary significantly by hook style or bait type combinations. The total retained catch was analyzed in value per unit effort (VPU E), and indicated losses in fishery revenue when mackerel was used instead of squid, but not when circle hooks were used instead of J-hooks.
Resumo:
To investigate the possible influence of the Siculo-Tunisian Strait on the genetic structure of white seabream Diplodus sargus, 13 polymorphic allozyme loci and a fragment of the cytochrome b mitochondrial DNA were analysed. Allozyme data indicated a moderate but significant differentiation between some north-eastern (Bizerta, Ghar El Melh Lagoon and Mahdia) and southern (Gabes Gulf and El Biban Lagoon) samples. This heterogeneity was also highlighted after removing PGM* and PGI-1* loci which may be under selection. These results can be explained by the chaotic genetic patchiness hypothesis. In contrast, the mtDNA data indicated genetic homogeneity among localities showing the absence of structure in white seabream populations across the Siculo-Tunisian Strait. Historical demography of this species suggests that it has undergone a recent population expansion as a consequence of a bottleneck event during the Pleistocene glaciations.
Resumo:
We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H = 0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (p = 0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise FST values and the results of exact tests and AMOVA revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata
Resumo:
The deep-sea lantern shark Etmopterus spinax occurs in the northeast Atlantic on or near the bottoms of the outer continental shelves and slopes, and is regularly captured as bycatch in deep-water commercial fisheries. Given the lack of knowledge on the impacts of fisheries on this species, a demographic analysis using age-based Leslie matrices was carried out. Given the uncertainties in the mortality estimates and in the available life history parameters, several different scenarios, some incorporating stochasticity in the life history parameters (using Monte Carlo simulation), were analyzed. If only natural mortality were considered, even after introducing uncertainties in all parameters, the estimated population growth rate (A) suggested an increasing population. However, if fishing mortality from trawl fisheries is considered, the estimates of A either indicated increasing or declining populations. In these latter cases, the uncertainties in the species reproductive cycle seemed to be particularly relevant, as a 2-year reproductive cycle indicated a stable population, while a longer (3-year cycle) indicated a declining population. The estimated matrix elasticities were in general higher for the survivorship parameters of the younger age classes and tended to decrease for the older ages. This highlights the susceptibility of this deep-sea squaloid to increasing fishing mortality, emphasizing that even though this is a small-sized species, it shows population dynamics patterns more typical of the larger-sized and in general more vulnerable species. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Partial sequences of the mitochondrial control region and its comparison with previously published cytochrome b (cyt-b) and microsatellite data were used to investigate the influence of island isolation and connectivity on white seabream genetic structure. To achieve this, a total of 188 individuals from four island localities (Castellamare and Mallorca, Mediterranean Sea; Azores and Canary Islands, Atlantic Ocean) and five coastal localities (Banyuls, Murcia and Tunisia, Mediterranean Sea; Galicia and Faro, Atlantic Ocean) were analysed. Results showed high haplotype diversity and low to moderate nucleotide diversity in all populations (except for the Canary Islands). This pattern of genetic diversity is attributed to a recent population expansion which is corroborated by other results such as cyt-b network and demographic analyses. Low differentiation among Mediterranean/Atlantic and coastal/island groups was shown by the AMOVA and FST values, although a weak phylogeographic break was detected using cyt-b data. However, we found a clear and significant island/ distance effect with regard to the Azores islands. Significant genetic differentiation has been detected between the Azores islands and all other populations. The large geographical distance between the European continental slope and the Azores islands is a barrier to gene flow within this region and historic events such as glaciation could also explain this genetic differentiation.
Resumo:
Etmopterus spinax is a small-sized deep-water lantern shark that occurs in the Eastern Atlantic and the Mediterranean. Differences in depth distribution, densities, size at maturity and fecundity were compared between a population that has suffered high levels of fishing mortality during the last decades (Southern Portugal in the northeast Atlantic) and a population where low fishing pressure below 500 m occurs at present or has occurred in the last decades (Northern Alboran Sea in the western Mediterranean). The density of this species, as derived by experimental bottom trawl survey, off the coast of Southern Portugal, is substantially lower than in the Northern Alboran Sea throughout the entire depth range. The Atlantic population is maturing at smaller sizes than the Mediterranean population and has a lower mean fecundity. Specifically, sizes at maturity for Southern Portugal and the Northern Alboran Sea were, respectively, 25.39 and 28.31 cm TL for males and 30.86 and 34.18 cm TL for females, while mean fecundities for Southern Portugal and the Northern Alboran Sea were, respectively, 9.94 and 11.06 oocytes per mature female. This work demonstrated the possible presence of density-dependent mechanisms in the Southern Portuguese population of E. spinax that has lowered the size at maturity as a possible result of excessive fishing mortality. However, given that this is an aplacentary viviparous shark, where fecundity is dependent on female size, this compensatory mechanism seems to have a limited efficiency.