3 resultados para Asociación Española de Ecología Terrestre

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communities can be defined as assemblages of species coexisting under particular environments. The relationship between environment and species are regulated by both environmental requirements –which ultimately determine the species capacity to establish and survive in a particular environment– and the ecological interactions occurring during assembly processes –which also determine community composition by conditioning species coexistence. In this context, plant functional traits are attributes that represent ecological strategies and determine how plants respond to environmental factors and interact with other species. Therefore, the analysis of how traits vary through the dynamics of communities, such as along successions, can give insights about how environmental requirements and species interactions may determine the composition and functional structure of these communities. The xerophytic shrub communities inhabiting inland sand dunes in SW Portugal are characterized by successional processes that are mainly driven by local (edaphic gradients and human disturbance) and regional (climate) processes. Therefore, they constitute an appropriate system for studying species interactions and environmentcommunity co-variations based on functional terms. Using these communities as a model, we evaluate the hypothesis that successional community changes in species composition of xerophytic shrub communities can result in concurrent changes in functional diversity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inland sand dune systems are amongst the most threatened habitat types of Europe. Affected by severe conditions, these habitats present distinct community compositions, which makes them excellent for studying possible interactions among their integrating species and the environment. We focus on understanding the distribution and cooccurrence of the species from dune plant assemblages as a key step for the adequate protection of these habitats. Using data from an extensive survey we identified the shrub species that could be considered indicators of the different xerophytic scrub dune communities in South West Portugal. Then, we modelled the responses of these species to the environmental conditions using Ecological Niche Factor Analysis. We present some preliminary results elucidating whether using species distribution models of indicator species at a regional scale is a valid approach to predict the distribution of the different types of communities inhabiting these endangered habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the factors that affect seagrass meadows encompassing their entire range of distribution is challenging yet important for their conservation. We model the environmental niche of Cymodocea nodosa using a combination of environmental variables and landscape metrics to examine factors defining its distribution and find suitable habitats for the species. The most relevant environmental variables defining the distribution of C. nodosa were sea surface temperature (SST) and salinity. We found suitable habitats at SST from 5.8 ºC to 26.4 ºC and salinity ranging from 17.5 to 39.3. Optimal values of mean winter wave height ranged between 1.2 m and 1.5 m, while waves higher than 2.5 m seemed to limit the presence of the species. The influence of nutrients and pH, despite having weight on the models, was not so clear in terms of ranges that confine the distribution of the species. Landscape metrics able to capture variation in the coastline enhanced significantly the accuracy of the models, despite the limitations caused by the scale of the study. By contrasting predictive approaches, we defined the variables affecting the distributional areas that seem unsuitable for C. nodosa as well as those suitable habitats not occupied by the species. These findings are encouraging for its use in future studies on climate-related marine range shifts and meadow restoration projects of these fragile ecosystems.