6 resultados para Anabolism defence
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The present work has the merit of exploring an insight into the activation of defence genes of Quercus suber during response to infection by Phytophthora cinnamomi. Thus, cDNA-AFLP methodology was used to identify gene fragments differentially present in the mRNA profiles of host cells of micropropagated Q. suber plantlets roots infected with zoospores of P. cinnamomi at different post challenge time points. Six candidate genes were selected based on their interesting cDNA-AFLP expression patterns and homology to genes known to play a role in defence. These six genes encode a cinnamyl alcohol dehydrogenase 2 (QsCAD2), a protein disulphide isomerase (QsPDI), a CC-NBS-LRR resistance protein (QsRPc), thaumatin-like protein (QsTLP), chitinase (QsCHI) and a 1,3-beta glucanase (QsGLU). The current work has been successful in evaluation of the expression of these genes by qRT-PCR. Data analysis revealed that transcript levels of QsRPc, QsCHI, QsCAD2 and QsPDI increased during the early hours of inoculation, while transcript profiles of thaumatin-like protein showed decreasing. No expression was detected for 1,3-beta-glucanase (QsGLU). Furthermore, the choice of suitable reference genes in any new experimental system is absolutely crucial in qRT-PCR; for this reason in this study and for the first time a set of potential reference genes were analyzed and validated for qRT-PCR normalization in the patho-system Phytophthora-Q. suber. Four candidate reference genes polimerase II (QsRPII), eukaryotic translation initiation factor 5A(QsEIF-5A), b-tubulin (QsTUB) and a medium subunit family protein of Clathrin adaptor complexes (QsCACs) were evaluated to determine the most stable internal references in Q. suber. Analysis of stability of genes was carried out using Genex software. Results indicated all these four potential reference genes assumed stable expression. Data analysis revealed that QsRPII and QsCACs were the two most stable genes, while genes QsTUB and QsEIF-5A were the third and the fourth most stable gene, respectively. In this study, a plasmid-based quantitative PCR method was developed to measure P. cinnamomi colonization during infection process of Q. suber. Plasmid-based detection of P. cinnamomi showed a gradual accumulation of the pathogen DNA in cork oak root tips up to 24 h post infection. The higher increase in P. cinnamomi/plasmid DNA ratio occurred between 18 and 24 h. One of the primary objectives of this research was to study the effect of cinnamomins (elicitins secreted by P. cinnamomin) on inducing defence mechanism against the pathogen, as recent histological and ultra-structural studies showed that P. cinnamomi was restricted to the outer cortex root fragments pre-treated with capsicien and cryptogein, suggesting that elicitins can stimulate plant defence reactions against P. cinnamomi. To complement these studies and to have a clear view of the nature of the interaction, the role of cinnamomins in the production of the oxidative burst [ROS and ROS scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)] and in the defence responses was evaluated. Cork oak seedlings were pretreated with alpha-cinnamomin and then inoculated with P. cinnamomi mycelia. Results showed a significant higher production of reactive oxygen species (ROS) (H2O2 and O2•-) in elicitin and non-elicitin treated roots in interaction with P. cinnamomi in comparison to the corresponding control. The plant group inoculated with the pathogen after cinnamomin treatment showed an earlier increase in H2O2 production but this was lower as compared with that group inoculated with P. cinnamomi alone. Also, in elicitin pre-treated group generally, a lower level of O2•− production during infection was observed as compared with inoculated roots with P. cinnamomi alone without elicitin treatment. Furthermore, in this study, we evaluated activities of antioxidant enzymes upon challenge with P. cinnamomi, with and without pretreatment with alpha cinnamomin. Results indicated that the activities of defense enzymes POD, SOD and CAT increased after P. cinnamomi inoculation when compared with those in the control group. Also, in the group treated with alpha-cinnamomin followed by P. cinnamomi inoculation, a higher level of enzymatic activities was detected as compared with elicitin non-treated group, which suggest the protective effect of alpha-cinnamomin against the pathogen due to higher elevated levels of defense enzymes POD, SOD and CAT during the infection period. Furthermore, a sensitive qPCR method was applied to measure the pathogen biomass in elicited and non-elicited Q. suber roots challenged with P. cinnamomi to elucidate the effect of cinnamomins on the colonization of P. cinnamomi. Plasmid-based quantification of P. cinnamomi showed a significant decrease in accumulation of the pathogen DNA in cork oak roots after treatment with alpha and beta-cinnamomins which attest the role of cinnamomins in promoting defense responses in cork oak against P. cinnamomi invasion.
Resumo:
Dissertação mest., Estudos Marinhos e Costeiros, Universidade do Algarve, 2007
Resumo:
As preocupações médicas com o equilíbrio alimentar remontam à Antiguidade, mas apenas a partir do século XVII o assunto começou a ser questionado de modo mais científico e preciso. Dois médicos holandeses de renome, Luís Nunes (1553-1645) e Willem Piso (1611-1678), estudaram esta questão e legaram-nos tratados de inquestionável relevância historiográfica. Destacamos, em particular, Ichtyophagia sive de piscium esu commentarius (“Ictiofagia ou comentário sobre uma alimentação piscívora”, Antuérpia, 1616) e De Indiae utriusque re naturali et medica. Libri quatuordecim (“Sobre a Índia e sua história natural e médica”, Amesterdão, 1658). A defesa de uma dieta que inclua o consumo de peixe é transversal aos dois textos, pois ambos fundam um discurso inaugural em defesa de hábitos alimentares equilibrados numa época de profundas mudanças históricas e culturais impostas pelo contacto com as realidades do exótico Novo Mundo. Esta influência é sobretudo evidente na obra de Piso, especialmente nas suas descrições de espécies de peixes endémicas do Brasil.
Resumo:
Infectious diseases often hamper the production of aquatic organisms in aquaculture systems, causing economical losses, environmental problems and consumer safety issues. The conventional way aquaculture producers had to control pathogens was by means of synthetic antibiotics and chemicals. This procedure had consequences in the emergence of more resilient pathogens, drug contamination of seafood products and local ecosystems. To avoid the repercussions of antibiotic use, vaccination has greatly replaced human drugs in western fish farms. However there is still massive unregulated antibiotic use in third world fish farms, so less expensive therapeutic alternatives for drugs are desperately needed. An alternative way to achieve disease control in aquaculture is by using natural bioactive organic compounds with antibiotic, antioxidant and/or immunostimulant properties. Such diverse biomolecules occur in bacteria, algae, fungi, higher plants and other organisms. Fatty acids, nucleotides, monosaccharides, polysaccharides, peptides, polyphenols and terpenoids, are examples of these substances. One promising source of bioactive compounds are salt tolerant plants. Halophytes have more molecular resources and defence mechanisms, when compared with other tracheophytes, to deal with the oxidative stresses of their habitat. Many halophytes have been used as a traditional food and medical supply, especially by African and Asian cultures. This scientific work evaluated the antibiotic, antioxidant, immunostimulant and metal chelating properties of Atriplex halimus L., Arthrocnemum macrostachyum Moric., Carpobrotus edulis L., Juncus acutus L. and Plantago coronopus L., from the Algarve coast. The antibiotic properties were tested against Listonella anguillarum, Photobacterium damselae piscicida and Vibrio fischeri. The immunostimulant properties were tested with cytochrome c and Griess assays on Sparus aurata head-kidney phagocytes. J. acutus ether extract inhibited the growth of P. damselae piscicida. A. macrostachyum, A. halimus, C. edulis, Juncus acutus and P. coronopus displayed antioxidant, copper chelating and iron chelating properties. These plants show potential as sources of bioactive compounds with application in aquaculture and in other fields.
Resumo:
Climate change scenarios comprise significant modifications of the marine realm, notably ocean acidification and temperature increase, both direct consequences of the rising atmospheric CO2 concentration. These changes are likely to impact marine organisms and ecosystems, namely the valuable seagrass-dominated coastal habitats. The main objective of this thesis was to evaluate the photosynthetic and antioxidant responses of seagrasses to climate change, considering CO2, temperature and light as key drivers of these processes. The methodologies used to determine global antioxidant capacity and antioxidant enzymatic activity in seagrasses were optimized for the species Cymodocea nodosa and Posidonia oceanica, revealing identical defence mechanisms to those found in terrestrial plants. The detailed analysis and identification of photosynthetic pigments in Halophila ovalis, H.stipulacea, Zostera noltii, Z marina, Z. capricorni, Cymodocea nodosa and Posidonia oceanica, sampled across different climatic zones and depths, also revealed a similarity with terrestrial plants, both in carotenoid composition and in the pigment-based photoprotection mechanisms. Cymodocea nodosa plants from Ria Formosa were submitted to the combined effect of potentially stressful light and temperature ranges and showed considerable physiological tolerance, due to the combination of changes in the antioxidant system, activation of the VAZ cycle and accumulation of leaf soluble sugars, thus preventing the onset of oxidative stress. Cymodocea nodosa plants living in a naturally acidified environment near submarine volcanic vents in Vulcano Island (Italy) showed to be under oxidative stress despite the enhancement of the antioxidant capacity, phenolics concentration and carotenoids. Posidonia oceanica leaves loaded with epiphytes showed a significant increase in oxidative stress, despite the increase of antioxidant responses and the allocation of energetic resources to these protection mechanisms. Globally, the results show that seagrasses are physiologically able to deal with potentially stressful conditions from different origins, being plastic enough to avoid stress in many situations and to actively promote ulterior defence and repair mechanisms when under effective oxidative stress.
Resumo:
Tese de doutoramento, Ciências Agrárias (Proteção de Plantas), Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2014