3 resultados para 380303 Computer Perception, Memory and Attention

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a brief overview of the processing in the primary visual cortex, the multi-scale line/edge and keypoint representations, and a model of brightness perception. This model, which is being extended from 1D to 2D, is based on a symbolic line and edge interpretation: lines are represented by scaled Gaussians and edges by scaled, Gaussian-windowed error functions. We show that this model, in combination with standard techniques from graphics, provides a very fertile basis for non-photorealistic image rendering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Painterly rendering has been linked to computer vision, but we propose to link it to human vision because perception and painting are two processes that are interwoven. Recent progress in developing computational models allows to establish this link. We show that completely automatic rendering can be obtained by applying four image representations in the visual system: (1) colour constancy can be used to correct colours, (2) coarse background brightness in combination with colour coding in cytochrome-oxidase blobs can be used to create a background with a big brush, (3) the multi-scale line and edge representation provides a very natural way to render fi ner brush strokes, and (4) the multi-scale keypoint representation serves to create saliency maps for Focus-of-Attention, and FoA can be used to render important structures. Basic processes are described, renderings are shown, and important ideas for future research are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic routing and saliency maps for Focus-of-Attention. All these combined allow us to segregate faces. Events of different facial views are stored in memory and combined in order to identify the view and recognise the face including facial expression. In this paper we show that with five 2D views and their cortical representations it is possible to determine the left-right and frontal-lateral-profile views and to achieve view-invariant recognition of 3D faces.