2 resultados para Lead user innovation

em Royal College of Art Research Repository - Uninet Kingdom


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using product and system design to influence user behaviour offers potential for improving performance and reducing user error, yet little guidance is available at the concept generation stage for design teams briefed with influencing user behaviour. This article presents the Design with Intent Method, an innovation tool for designers working in this area, illustrated via application to an everyday human–technology interaction problem: reducing the likelihood of a customer leaving his or her card in an automatic teller machine. The example application results in a range of feasible design concepts which are comparable to existing developments in ATM design, demonstrating that the method has potential for development and application as part of a user-centred design process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

User behaviour is a significant determinant of a product’s environmental impact; while engineering advances permit increased efficiency of product operation, the user’s decisions and habits ultimately have a major effect on the energy or other resources used by the product. There is thus a need to change users’ behaviour. A range of design techniques developed in diverse contexts suggest opportunities for engineers, designers and other stakeholders working in the field of sustainable innovation to affect users’ behaviour at the point of interaction with the product or system, in effect ‘making the user more efficient’. Approaches to changing users’ behaviour from a number of fields are reviewed and discussed, including: strategic design of affordances and behaviour-shaping constraints to control or affect energyor other resource-using interactions; the use of different kinds of feedback and persuasive technology techniques to encourage or guide users to reduce their environmental impact; and context-based systems which use feedback to adjust their behaviour to run at optimum efficiency and reduce the opportunity for user-affected inefficiency. Example implementations in the sustainable engineering and ecodesign field are suggested and discussed.