3 resultados para winogradsly columns
em Research Open Access Repository of the University of East London.
Resumo:
This paper presents an experimental investigation carried out on concrete filled fibre reinforced polymers (FRP) tubes, subjected to monotonic and cyclic loading. Two types of FRP materials were used: glass fibres and carbon fibres. Different failure modes and the effect of concrete fill, type of confinement materials, reinforcement ratio based on tube thickness and type of loading are examined. The study shows that external confinement of concrete by means of modern materials, such fibre reinforced polymers, can enhance its strength and ductility as well as result in large energy absorption capacity. This has important safety implications, especially in regions with seismic activity. A model that predicts the behaviour of confined concrete which takes into account the stiffness and effectiveness of different confinement materials is briefly introduced.
Resumo:
This article examines the effectiveness of two innovative retrofitting solutions at enhancing the seismic behaviour of a substandard reinforced concrete building tested on a shake table as part of the Pan-European funded project BANDIT. To simulate typical substandard construction, the reinforcement of columns and beam-column joints of the full-scale structure had inadequate detailing. An initial series of shake table tests were carried out to assess the seismic behaviour of the bare building and the effectiveness of a first retrofitting intervention using Post-Tensioned Metal Straps. After these tests, columns and joints were repaired and subsequently retrofitted using a retrofitting solution consisting of Carbon Fibre Reinforced Polymers and Post-Tensioned Metal Straps applied on opposite frames of the building. The building was then subjected to unidirectional and three-dimensional incremental seismic excitations to assess the effectiveness of the two retrofitting solutions at improving the global and local building performance. The article provides details of the above shake table testing programme and retrofitting solutions, and discusses the test results in terms of the observed damage, global damage indexes, performance levels and local strains. It is shown that whilst the original bare building was significantly damaged at a peak ground acceleration (PGA) of 0.15g, the retrofitted building resisted severe threedimensional shake table tests up to PGA=0.60g without failure. Moreover, the retrofitting intervention enhanced the interstorey drift ratio capacity of the 1st and 2nd floors by 160% and 110%, respectively. Therefore, the proposed dual retrofitting system is proven to be very effective for improving the seismic performance of substandard buildings.
Resumo:
The effectiveness of a novel Post-Tensioned Metal Strapping (PTMS) technique at enhancing the seismic behaviour of a substandard RC building was investigated through full-scale shake-table tests during the EU-funded project BANDIT. The building had inadequate reinforcement detailing in columns and joints to replicate old construction practices. After the bare building was initially damaged significantly, it was repaired and strengthened with PTMS to perform additional seismic tests. The PTMS technique improved considerably the seismic performance of the tested building. Whilst the bare building experienced critical damage at an earthquake of PGA=0.15g, the PTMS-strengthened building sustained a PGA=0.35g earthquake without compromising stability.