2 resultados para static feature
em Research Open Access Repository of the University of East London.
Resumo:
The paper describes the use of radial basis function neural networks with Gaussian basis functions to classify incomplete feature vectors. The method uses the fact that any marginal distribution of a Gaussian distribution can be determined from the mean vector and covariance matrix of the joint distribution.
Resumo:
Observation-based slicing is a recently-introduced, language-independent, slicing technique based on the dependencies observable from program behaviour. Due to the wellknown limits of dynamic analysis, we may only compute an under-approximation of the true observation-based slice. However, because the observation-based slice captures all possible dependence that can be observed, even such approximations can yield insight into the limitations of static slicing. For example, a static slice, S that is strictly smaller than the corresponding observation based slice is guaranteed to be unsafe. We present the results of three sets of experiments on 12 different programs, including benchmarks and larger programs, which investigate the relationship between static and observation-based slicing. We show that, in extreme cases, observation-based slices can find the true static minimal slice, where static techniques cannot. For more typical cases, our results illustrate the potential for observation-based slicing to highlight unsafe static slices. Finally, we report on the sensitivity of observation-based slicing to test quality.