4 resultados para software management methodology
em Research Open Access Repository of the University of East London.
Resumo:
Software Architecture is a high level description of a software intensive system that enables architects to have a better intellectual control over the complete system. It is also used as a communication vehicle among the various system stakeholders. Variability in software-intensive systems is the ability of a software artefact (e.g., a system, subsystem, or component) to be extended, customised, or configured for deployment in a specific context. Although variability in software architecture is recognised as a challenge in multiple domains, there has been no formal consensus on how variability should be captured or represented. In this research, we addressed the problem of representing variability in software architecture through a three phase approach. First, we examined existing literature using the Systematic Literature Review (SLR) methodology, which helped us identify the gaps and challenges within the current body of knowledge. Equipped with the findings from the SLR, a set of design principles have been formulated that are used to introduce variability management capabilities to an existing Architecture Description Language (ADL). The chosen ADL was developed within our research group (ALI) and to which we have had complete access. Finally, we evaluated the new version of the ADL produced using two distinct case studies: one from the Information Systems domain, an Asset Management System (AMS); and another from the embedded systems domain, a Wheel Brake System (WBS). This thesis presents the main findings from the three phases of the research work, including a comprehensive study of the state-of-the-art; the complete specification of an ADL that is focused on managing variability; and the lessons learnt from the evaluation work of two distinct real-life case studies.
Resumo:
Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variability management is the handling and effective visualization of large-scale (industry-size) models, which in many projects, can reach the order of thousands, along with the dependency relationships that exist among them. These have raised many concerns regarding the scalability of current variability management tools and techniques and their lack of industrial adoption. To address the scalability issues, this work employed a combination of quantitative and qualitative research methods to identify the reasons behind the limited scalability of existing variability management tools and techniques. In addition to producing a comprehensive catalogue of existing tools, the outcome form this stage helped understand the major limitations of existing tools. Based on the findings, a novel approach was created for managing variability that employed two main principles for supporting scalability. First, the separation-of-concerns principle was employed by creating multiple views of variability models to alleviate information overload. Second, hyperbolic trees were used to visualise models (compared to Euclidian space trees traditionally used). The result was an approach that can represent models encompassing hundreds of variability points and complex relationships. These concepts were demonstrated by implementing them in an existing variability management tool and using it to model a real-life product line with over a thousand variability points. Finally, in order to assess the work, an evaluation framework was designed based on various established usability assessment best practices and standards. The framework was then used with several case studies to benchmark the performance of this work against other existing tools.
Resumo:
Although security plays an important role in the development of multiagent systems, a careful analysis of software development processes shows that the definition of security requirements is, usually, considered after the design of the system. One of the reasons is the fact that agent oriented software engineering methodologies have not integrated security concerns throughout their developing stages. The integration of security concerns during the whole range of the development stages can help towards the development of more secure multiagent systems. In this paper we introduce extensions to the Tropos methodology to enable it to model security concerns throughout the whole development process. A description of the new concepts and modelling activities is given along with a discussion on how these concepts and modelling activities are integrated to the current stages of Tropos. A real life case study from the health and social care sector is used to illustrate the approach.
Resumo:
Variability management is one of the main activities in the Software Product Line Engineering process. Common and varied features of related products are modelled along with the dependencies and relationships among them. With the increase in size and complexity of product lines and the more holistic systems approach to the design process, managing the ever- growing variability models has become a challenge. In this paper, we present MUSA, a tool for managing variability and features in large-scale models. MUSA adopts the Separation of Concerns design principle by providing multiple perspectives to the model, each conveying different set of information. The demonstration is conducted using a real-life model (comprising of 1000+ features) particularly showing the Structural View, which is displayed using a mind-mapping visualisation technique (hyperbolic trees), and the Dependency View, which is displayed graphically using logic gates.