1 resultado para poedeiras semi-pesadas
em Research Open Access Repository of the University of East London.
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Aquatic Commons (21)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Biblioteca Digital da Câmara dos Deputados (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (93)
- CentAUR: Central Archive University of Reading - UK (56)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (99)
- Cochin University of Science & Technology (CUSAT), India (13)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (12)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (14)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (5)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Greenwich Academic Literature Archive - UK (10)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (72)
- Infoteca EMBRAPA (16)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (12)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (11)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (65)
- Queensland University of Technology - ePrints Archive (45)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (236)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (5)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (2)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (36)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (20)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
Semi-autonomous avatars should be both realistic and believable. The goal is to learn from and reproduce the behaviours of the user-controlled input to enable semi-autonomous avatars to plausibly interact with their human-controlled counterparts. A powerful tool for embedding autonomous behaviour is learning by imitation. Hence, in this paper an ensemble of fuzzy inference systems cluster the user input data to identify natural groupings within the data to describe the users movement and actions in a more abstract way. Multiple clustering algorithms are investigated along with a neuro-fuzzy classifier; and an ensemble of fuzzy systems are evaluated.