5 resultados para performance tests
em Research Open Access Repository of the University of East London.
Resumo:
This article examines the effectiveness of two innovative retrofitting solutions at enhancing the seismic behaviour of a substandard reinforced concrete building tested on a shake table as part of the Pan-European funded project BANDIT. To simulate typical substandard construction, the reinforcement of columns and beam-column joints of the full-scale structure had inadequate detailing. An initial series of shake table tests were carried out to assess the seismic behaviour of the bare building and the effectiveness of a first retrofitting intervention using Post-Tensioned Metal Straps. After these tests, columns and joints were repaired and subsequently retrofitted using a retrofitting solution consisting of Carbon Fibre Reinforced Polymers and Post-Tensioned Metal Straps applied on opposite frames of the building. The building was then subjected to unidirectional and three-dimensional incremental seismic excitations to assess the effectiveness of the two retrofitting solutions at improving the global and local building performance. The article provides details of the above shake table testing programme and retrofitting solutions, and discusses the test results in terms of the observed damage, global damage indexes, performance levels and local strains. It is shown that whilst the original bare building was significantly damaged at a peak ground acceleration (PGA) of 0.15g, the retrofitted building resisted severe threedimensional shake table tests up to PGA=0.60g without failure. Moreover, the retrofitting intervention enhanced the interstorey drift ratio capacity of the 1st and 2nd floors by 160% and 110%, respectively. Therefore, the proposed dual retrofitting system is proven to be very effective for improving the seismic performance of substandard buildings.
Resumo:
The effectiveness of a novel Post-Tensioned Metal Strapping (PTMS) technique at enhancing the seismic behaviour of a substandard RC building was investigated through full-scale shake-table tests during the EU-funded project BANDIT. The building had inadequate reinforcement detailing in columns and joints to replicate old construction practices. After the bare building was initially damaged significantly, it was repaired and strengthened with PTMS to perform additional seismic tests. The PTMS technique improved considerably the seismic performance of the tested building. Whilst the bare building experienced critical damage at an earthquake of PGA=0.15g, the PTMS-strengthened building sustained a PGA=0.35g earthquake without compromising stability.
Resumo:
Moisture and heat management properties of Hemp and Stone Wool insulations were studied by mounting them between a hot and a cold climate chamber. Both insulations were exposed to identical hygrothermal boundary conditions. Quasi steady state and dynamic tests were carried out at a range of relative humidity exposures. The likelihood of interstitial condensation was assessed and equivalent thermal conductivity values of the insulations were determined. The adsorption-desorption isotherms of the insulations were also determined in a dynamic vapour sorption (DVS) instrument. It was observed that the likelihood of condensation was higher in Stone Wool insulation than in Hemp insulation. Hemp insulation performed better in managing moisture due to its high hygric inertia and water absorption capacity. It was observed that the equivalent thermal conductivity of Stone Wool insulation was dependent on enthalpy flow and phase change of moisture. The equivalent thermal conductivity of Hemp insulation was close to its declared thermal conductivity in dynamic conditions when high relative humidity exposures were transient. In quasi steady state boundary conditions, when the insulation was allowed to reach the equilibrium moisture content at ranges of relative humidity, there was a moisture dependent increase of thermal conductivity in Hemp insulation.
Resumo:
In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.
Resumo:
The aim of this study was to investigate whether rinsing the mouth with a carbohydrate solution could improve skill-specific fencing performance and cognitive function following a fatigue inducing simulated bout of fencing in epee fencers. Eleven healthy, competitive epee fencers (three female; eight male; 33.9 ± 14.7 years; body mass 79 ± 16 kg; height 162 ± 54 cm) volunteered to participant in a single-blind crossover design study. During visit 1 participants completed a 1-minute lunge test and stroop test pre and post fatigue inducing fencing protocol. A 30 second electroencephalography (EEG) recording was taken pre-protocol participants were instructed stay in a seated stationary position with their eyes closed. Heart rate and ratings of perceived exertion were recorded following each fight during the fatiguing protocol. Participants mouth rinsed (10 seconds) either 25ml of a 6.7% maltodextrin solution (CHO) or 25ml of water (placebo) between fights and during the EEG recording. Blood lactate and glucose measurements were taken at baseline, pre and post protocol. All measurements and tests were repeated during a 2nd visit to the laboratory, except participants were given a different solution to mouth rinse, separated by a minimum of 5 days. The results showed an increase in heart rate (P < 0.05) and overall RPE (P < 0.001) over time in both trials. There were no recorded differences in blood glucose (F(1,8) = 0.634, P = 0.4, ηp 0.07) or blood lactate levels (F(1,8) = 0.123, P = 0.7, ηp 0.01) between trials. There was a significant improvement in lunge test accuracy in the CHO trial (F(1,8) = 5.214, P = 0.05, ηp 0.40). However, there was no recorded difference in response time to congruent (F(1,8) = 0.326, P = 0.58, ηp 0.04) or incongruent (F(1,8) = 0.189, P = 0.68, ηp 0.02) stimuli between trials. In conclusion mouth rinsing a CHO solution significantly improves accuracy of skill-specific fencing performance but does not affect cognitive function following a fatigue inducing fencing protocol in epee fencers.