2 resultados para paediatric asthma
em Research Open Access Repository of the University of East London.
Resumo:
The knee adduction moment (KAM) during gait has been proposed as an indirect measure of dynamic knee joint loading and has been reported to be higher in obese children [1, 2]. The KAM is primarily calculated from the resultant ground reaction force (GRF) and the lever arm length, both of which can be manipulated through weight-loss or medical interventions [1]. However, there is little data on the relationships between the mechanical, anthropometric and gait contributors to the KAM during paediatric gait. The objectives of the study were to examine the associations with the first (1st) and second (2nd) peak KAM (pKAM) and: (1) centre of pressure (CoP), KAM lever arm length, vertical and mediolateral ground reaction forces (GRF) and, (2) fat mass, height, step width, foot rotation, knee rotation and walking velocity.
Resumo:
Childhood obesity is commonly associated with a pes planus foot type and altered lower limb joint function during walking. However, limited information has been reported on dynamic intersegment foot motion with the level of obesity in children. The aim of this study was to explore the relationships between intersegment foot motion during gait and body fat in boys age 7 to 11 years. Fat mass was measured in fifty-five boys using air displacement plethysmography. Three-dimensional gait analysis was conducted on the right foot of each participant using the 3DFoot model to capture angular motion of the shank, calcaneus, midfoot and metatarsals. Two multivariate statistical techniques were employed; principle component analysis reduced the multidimensional nature of gait analysis, and multiple linear regression analysis accounted for potential confounding factors. Higher fat mass predicted greater plantarflexion of the calcaneus during the first half and end of stance phase and at the end of swing phase. Greater abduction of the calcaneus throughout stance and swing was predicted by greater fat mass. At the midfoot, higher fat mass predicted greater dorsiflexion and eversion throughout the gait cycle. The findings present novel information on the relationships between intersegment angular motion of the foot and body fat in young boys. The data indicates a more pronated foot type in boys with greater body fat. These findings have clinical implications for pes planus and a predisposition for pain and discomfort during weight bearing activities potentially reducing motivation in obese children to be physically active.