3 resultados para moisture content

em Research Open Access Repository of the University of East London.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a scientific development to address the current absence of a convenient technique to identify the ductile to brittle transition of bentonite clay mats. The instrumented indentation and 3-point bending tests were performed on different liquid polymer hydrated bentonite clay mats at varying moisture content. Properties measured include modified Brinell Hardness Number (BHN) and elastic structural stiffness (EI). The dependence of flexural stiffness on moisture content is demonstrated to conform to a best power function variation. The ductile to brittle transition of clay mat is affected primarily by the change in the moisture content and for the clay mat to remain flexible, critical moisture content of 1.7 times of its plastic limit is required. Results also indicate that a strong correlation between indentation hardness and the structural stiffness. The subsequent outcome in the development of a portable quality control device to monitor the acceptable moisture content level to ensure flexibility of the clay mats was also described in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the sustainable performance of geosynthetic clay liners (GCLs) which are popularly specified as “leachate retaining” or as “water proofing” membranes in the geo-environmental construction industry. Geosynthetic clay liners (GCLs) are composite matting comprising of bentonite clay with two covering geosynthetics. These are innovative labour saving construction material, developed over the last three decades. The paper outlines the variety of Geosynthetic Clay Liners (GCLs) can be classified essentially into two distinctly different forms viz; (a) air dry (< 8% m/c) with granular or powdered bentonite or (b) bentonite cake factory prehydrated to a moisture content (~40% m/c) beyond its shrinkage limit and vacuum extruded as a clay cake to enhance its sustainable performance. The dominant mineral in bentonite clay is the three-layered (2:1) clay mineral montmorillonite. High quality bentonites need to be used in the GCL manufacture. Sodium montmorillonite has the desired characteristic of high swelling capacity, high cation exchange capacity and the consequently very low hydraulic conductivity, providing the basis for the hydraulic sealing medium in GCLs. These encapsulate the active montmorillonite clay minerals which depend on the water and chemical balance between the sealing element and the surrounding geo environment. Quantitative mineralogical analyses and an assessment of the adsorbed cation regime, diffusion coefficients and clay leachate compatibility must necessarily be an integral part of the site appraisal to ensure acceptable long term sustainability and performance. Factors influencing the desired performance of bentonite in the GCLs placed in difficult construction and hostile chemical environments are discussed in this paper. Accordingly, the performance specifications for GCLs are identified and the appropriateness of enhancing the cation exchange capacity with polymer treatment and the need for factory prehydration of the untreated sodium bentonite is emphasised. The advantage of factory prehydrating the polymer treated bentonite to fluid content beyond its shrinkage limit and subsequently factory processing it to develop laminated clay is to develop a GCL that has enviable sealing characteristics with a greater resistance to geochemical attack and cracking. Since clay liners are buried in the ground as base liners, capping layer or as structural water proofing membrane, they can easily avoid strict quality and performance monitoring being “out of sight, out of mind!”. It is very necessary that barrier design for leachate containment must necessarily be in accordance with legislative requirement Assessment of long term hydraulic conductivities and clay-leachate compatibility assessment is deemed necessary. The derogatory factors affecting the sustainable performance of the bentonite in GCLs placed in difficult construction and hostile chemical environments are discussed. Sustainability concepts incorporated in waste management practice must aim to achieve 100% recycling and fully implement the handling of solid waste in developing countries with relatively lower labour costs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Moisture and heat management properties of Hemp and Stone Wool insulations were studied by mounting them between a hot and a cold climate chamber. Both insulations were exposed to identical hygrothermal boundary conditions. Quasi steady state and dynamic tests were carried out at a range of relative humidity exposures. The likelihood of interstitial condensation was assessed and equivalent thermal conductivity values of the insulations were determined. The adsorption-desorption isotherms of the insulations were also determined in a dynamic vapour sorption (DVS) instrument. It was observed that the likelihood of condensation was higher in Stone Wool insulation than in Hemp insulation. Hemp insulation performed better in managing moisture due to its high hygric inertia and water absorption capacity. It was observed that the equivalent thermal conductivity of Stone Wool insulation was dependent on enthalpy flow and phase change of moisture. The equivalent thermal conductivity of Hemp insulation was close to its declared thermal conductivity in dynamic conditions when high relative humidity exposures were transient. In quasi steady state boundary conditions, when the insulation was allowed to reach the equilibrium moisture content at ranges of relative humidity, there was a moisture dependent increase of thermal conductivity in Hemp insulation.