2 resultados para Work characteristics

em Research Open Access Repository of the University of East London.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical exercise programmes are routinely prescribed in clinical practice to treat impairments, improve activity and participation in daily life because of their known physiological, health and psychological benefits (RCP, 2009). Progressive resistance exercise is a type of exercise prescribed specifically to improve skeletal muscle strength (Latham et al., 2004). The effectiveness of progressive resistance exercise varies considerably between studies and populations. This thesis focuses on how training parameters influence the delivery of progressive resistance exercise. In order to appropriately evaluate the influence of training parameters, this thesis argues the need to record training performance and the total work completed by participants as prescribed by training protocols. In the first study, participants were taken through a series of protocols differentiated by the intensity and volume of training. Training intensity was defined as a proportion of the mean peak torque achieved during maximal voluntary contractions and was set at 80% and 40% respectively of the MVC mean peak torque. Training volume was defined as the total external work achieved over the training period. Measures of training performance were developed to accurately report the intensity, repetitions and work completed during the training period. A second study evaluated training performance of the training protocols over repeated sessions. These protocols were then applied to 3 stroke survivors. Study 1 found sedentary participants could achieve a differentiated training intensity. Participants completing the high and low intensity protocols trained at 80% and 40% respectively of the MVC mean peak torque. The total work achieved in the high intensity low repetition protocol was lower than the total work achieved in the low intensity high repetition protocol. With repeated practice, study 2 found participants were able to improve in their ability to perform manoeuvres as shown by a reduction in the variation of the mean training intensity achieving total work as specified by the protocol to a lower margin of error. When these protocols were applied to 3 stroke survivors, they were able to achieve the specified training intensity but they were not able to achieve the total work as expected for the protocol. This is likely to be due to an inability in achieving a consistent force throughout the contraction. These results demonstrate evaluation of training characteristics and support the need to record and report training performance characteristics during progressive resistance exercise, including the total work achieved, in order to elucidate the influence of training parameters on progressive resistance exercise. The lack of accurate training performance may partly explain the inconsistencies between studies on optimal training parameters for progressive resistance exercise.