4 resultados para Ummah (Islam)
em Research Open Access Repository of the University of East London.
Resumo:
More and more software projects today are security-related in one way or the other. Requirements engineers often fail to recognise indicators for security problems which is a major source of security problems in practice. Identifying security-relevant requirements is labour-intensive and errorprone. In order to facilitate the security requirements elicitation process, we present an approach supporting organisational learning on security requirements by establishing company-wide experience resources, and a socio-technical network to benefit from them. The approach is based on modelling the flow of requirements and related experiences. Based on those models, we enable people to exchange experiences about security-requirements while they write and discuss project requirements. At the same time, the approach enables participating stakeholders to learn while they write requirements. This can increase security awareness and facilitate learning on both individual and organisational levels. As a basis for our approach, we introduce heuristic assistant tools which support reuse of existing security-related experiences. In particular, they include Bayesian classifiers which issue a warning automatically when new requirements seem to be security-relevant. Our results indicate that this is feasible, in particular if the classifier is trained with domain specific data and documents from previous projects. We show how the ability to identify security-relevant requirements can be improved using this approach. We illustrate our approach by providing a step-by-step example of how we improved the security requirements engineering process at the European Telecommunications Standards Institute (ETSI) and report on experiences made in this application.
Resumo:
Building secure systems is difficult for many reasons. This paper deals with two of the main challenges: (i) the lack of security expertise in development teams, and (ii) the inadequacy of existing methodologies to support developers who are not security experts. The security standard ISO 14508 (Common Criteria) together with secure design techniques such as UMLsec can provide the security expertise, knowledge, and guidelines that are needed. However, security expertise and guidelines are not stated explicitly in the Common Criteria. They are rather phrased in security domain terminology and difficult to understand for developers. This means that some general security and secure design expertise are required to fully take advantage of the Common Criteria and UMLsec. In addition, there is the problem of tracing security requirements and objectives into solution design,which is needed for proof of requirements fulfilment. This paper describes a security requirements engineering methodology called SecReq. SecReq combines three techniques: the Common Criteria, the heuristic requirements editorHeRA, andUMLsec. SecReqmakes systematic use of the security engineering knowledge contained in the Common Criteria and UMLsec, as well as security-related heuristics in the HeRA tool. The integrated SecReq method supports early detection of security-related issues (HeRA), their systematic refinement guided by the Common Criteria, and the ability to trace security requirements into UML design models. A feedback loop helps reusing experiencewithin SecReq and turns the approach into an iterative process for the secure system life-cycle, also in the presence of system evolution.
Resumo:
Dependence clusters are (maximal) collections of mutually dependent source code entities according to some dependence relation. Their presence in software complicates many maintenance activities including testing, refactoring, and feature extraction. Despite several studies finding them common in production code, their formation, identification, and overall structure are not well understood, partly because of challenges in approximating true dependences between program entities. Previous research has considered two approximate dependence relations: a fine-grained statement-level relation using control and data dependences from a program’s System Dependence Graph and a coarser relation based on function-level controlflow reachability. In principal, the first is more expensive and more precise than the second. Using a collection of twenty programs, we present an empirical investigation of the clusters identified by these two approaches. In support of the analysis, we consider hybrid cluster types that works at the coarser function-level but is based on the higher-precision statement-level dependences. The three types of clusters are compared based on their slice sets using two clustering metrics. We also perform extensive analysis of the programs to identify linchpin functions – functions primarily responsible for holding a cluster together. Results include evidence that the less expensive, coarser approaches can often be used as e�ective proxies for the more expensive, finer-grained approaches. Finally, the linchpin analysis shows that linchpin functions can be e�ectively and automatically identified.
Resumo:
Observation-based slicing is a recently-introduced, language-independent, slicing technique based on the dependencies observable from program behaviour. Due to the wellknown limits of dynamic analysis, we may only compute an under-approximation of the true observation-based slice. However, because the observation-based slice captures all possible dependence that can be observed, even such approximations can yield insight into the limitations of static slicing. For example, a static slice, S that is strictly smaller than the corresponding observation based slice is guaranteed to be unsafe. We present the results of three sets of experiments on 12 different programs, including benchmarks and larger programs, which investigate the relationship between static and observation-based slicing. We show that, in extreme cases, observation-based slices can find the true static minimal slice, where static techniques cannot. For more typical cases, our results illustrate the potential for observation-based slicing to highlight unsafe static slices. Finally, we report on the sensitivity of observation-based slicing to test quality.