2 resultados para Type I error

em Research Open Access Repository of the University of East London.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clinical studies of large human populations and pharmacological interventions in rodent models have recently suggested that anti-hypertensive drugs that target angiotensin II (Ang II) activity may also improve loss of bone mineral density. Here we identified in a genetic screen the Ang II type I receptor (AT1R) as a potential determinant of osteogenic differentiation and, implicitly, bone formation. Silencing of AT1R expression by RNA interference severely impaired the maturation of a multipotent mesenchymal cell line (W20-17) along the osteoblastic lineage. The same effect was also observed after the addition of the AT1R antagonist losartan but not the AT2R inhibitor PD123,319. Additional cell culture assays traced the time of greatest losartan action to the early stages of W20-17 differentiation, namely during cell proliferation. Indeed, addition of Ang II increased proliferation of differentiating W20-17 and primary mesenchymal stem cells and this stimulation was reversed by losartan treatment. Cells treated with losartan also displayed an appreciable decrease of activated (phosphorylated)-Smad2/3 proteins. Moreover, Ang II treatment elevated endogenous transforming growth factor β (TGFβ) expression considerably and in an AT1R-dependent manner. Finally, exogenous TGFβ was able to restore high proliferative activity to W20-17 cells that were treated with both Ang II and losartan. Collectively, these results suggest a novel mechanism of Ang II action in bone metabolism that is mediated by TGFβ and targets proliferation of osteoblast progenitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to design a controlled release vehicle for insulin to preserve its stability and biological activity during fabrication and release. A modified, double emulsion, solvent evaporation, technique using homogenisation force optimised entrapment efficiency of insulin into biodegradable nanoparticles (NP) prepared from poly (dl-lactic-co-glycolic acid) (PLGA) and its PEGylated diblock copolymers. Formulation parameters (type of polymer and its concentration, stabiliser concentration and volume of internal aqueous phase) and physicochemical characteristics (size, zeta potential, encapsulation efficiency, in vitro release profiles and in vitro stability) were investigated. In vivo insulin sensitivity was tested by dietinduced type II diabetic mice. Bioactivity of insulin was studied using Swiss TO mice with streptozotocin-induced type I diabetic profile. Insulin-loaded NP were spherical and negatively charged with an average diameter of 200–400 nm. Insulin encapsulation efficiency increased significantly with increasing ratio of co-polymeric PEG. The internal aqueous phase volume had a significant impact on encapsulation efficiency, initial burst release and NP size. Optimised insulin NP formulated from 10% PEG-PLGA retained insulin integrity in vitro, insulin sensitivity in vivo and induced a sustained hypoglycaemic effect from 3 hours to 6 days in type I diabetic mice.