2 resultados para Task-Based Instruction (TBI)

em Research Open Access Repository of the University of East London.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional taught learning practices often experience difficulties in keeping students motivated and engaged. Video games, however, are very successful at sustaining high levels of motivation and engagement through a set of tasks for hours without apparent loss of focus. In addition, gamers solve complex problems within a gaming environment without feeling fatigue or frustration, as they would typically do with a comparable learning task. Based on this notion, the academic community is keen on exploring methods that can deliver deep learner engagement and has shown increased interest in adopting gamification – the integration of gaming elements, mechanics, and frameworks into non-game situations and scenarios – as a means to increase student engagement and improve information retention. Its effectiveness when applied to education has been debatable though, as attempts have generally been restricted to one-dimensional approaches such as transposing a trivial reward system onto existing teaching materials and/or assessments. Nevertheless, a gamified, multi-dimensional, problem-based learning approach can yield improved results even when applied to a very complex and traditionally dry task like the teaching of computer programming, as shown in this paper. The presented quasi-experimental study used a combination of instructor feedback, real time sequence of scored quizzes, and live coding to deliver a fully interactive learning experience. More specifically, the “Kahoot!” Classroom Response System (CRS), the classroom version of the TV game show “Who Wants To Be A Millionaire?”, and Codecademy’s interactive platform formed the basis for a learning model which was applied to an entry-level Python programming course. Students were thus allowed to experience multiple interlocking methods similar to those commonly found in a top quality game experience. To assess gamification’s impact on learning, empirical data from the gamified group were compared to those from a control group who was taught through a traditional learning approach, similar to the one which had been used during previous cohorts. Despite this being a relatively small-scale study, the results and findings for a number of key metrics, including attendance, downloading of course material, and final grades, were encouraging and proved that the gamified approach was motivating and enriching for both students and instructors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Caffeine has been shown to have effects on certain areas of cognition, but in executive functioning the research is limited and also inconsistent. One reason could be the need for a more sensitive measure to detect the effects of caffeine on executive function. This study used a new non-immersive virtual reality assessment of executive functions known as JEF© (the Jansari Assessment of Executive Function) alongside the ‘classic’ Stroop Colour- Word task to assess the effects of a normal dose of caffeinated coffee on executive function. Method: Using a double-blind, counterbalanced within participants procedure 43 participants were administered either a caffeinated or decaffeinated coffee and completed the ‘JEF©’ and Stroop tasks, as well as a subjective mood scale and blood pressure pre- and post condition on two separate occasions a week apart. JEF© yields measures for eight separate aspects of executive functions, in addition to a total average score. Results: Findings indicate that performance was significantly improved on the planning, creative thinking, event-, time- and action-based prospective memory, as well as total JEF© score following caffeinated coffee relative to the decaffeinated coffee. The caffeinated beverage significantly decreased reaction times on the Stroop task, but there was no effect on Stroop interference. Conclusion: The results provide further support for the effects of a caffeinated beverage on cognitive functioning. In particular, it has demonstrated the ability of JEF© to detect the effects of caffeine across a number of executive functioning constructs, which weren’t shown in the Stroop task, suggesting executive functioning improvements as a result of a ‘typical’ dose of caffeine may only be detected by the use of more real-world, ecologically valid tasks.