2 resultados para T cell subsets
em Research Open Access Repository of the University of East London.
Resumo:
Human β-defensins (hBDs) are a family of cationic peptides able to directly kill a wide range of microorganisms including bacteria, fungi and viruses. In addition to their antimicrobial activities, defensins also contribute to the modulation of both the host innate and adaptive immunity. In this project, we demonstrate that the αCD3/28 co-stimulation of human CD4+ T cells in the presence of 10μg/ml hBD-2 or hBD-3 together causes an up-regulation in numbers of CD4+CD69+CD25+ and CD4+CD69-CD25+ T cell subsets, indicating that the treatment of hBD-2 and 3 enhances CD4+ T cell activation. Consistent with this finding, proliferation assay using CFSE suggests that hBD-2 and hBD-3 treatment in vitro induces the proliferation of CD4+ T cells following by 96hrs culture. Analysis of expression of the regulatory T cells (Tregs) specific marker, FoxP3, reveals a shift in the CD4+CD127-CD25+ Treg subset at 18hrs. However, at the later time point, we found that the percentage of FoxP3+cells decreased in the CD4+CD127-CD25+ Treg population, whereas the presence of the FoxP3+CTLA-4+ Treg subset increased. These data indicate that Treg suppressive function may be potentially defective following the co-incubation of purified T cells with either hBD-2 or hBD-3 for 42hrs in vitro due to the apparent loss of FoxP3 expression. We further characterise the role of hBD-2 and hBD-3 in driving human CD4+ T cells polarisation. Our in vitro data suggests that treatment with hBD-2 and hBD-3 can not only induces effector T cell (Teff) differentiation into RORγt+T-bet+ (Th17/Th1) cells, but can also trigger the differentiation of Treg expressing RORγt and T-bet rather than the master controller of Treg function, FoxP3. This apparent plasticity of T cell phenotype allows them to convert from Treg to Th1/17-like effector T cell phenotype following 18hrs in culture. By 42hrs in culture, treatment with hBD-2 and hBD-3 induced both Teff cell and Treg cell differentiation towards the Th17-like phenotype. Compared with the treatment with hBD-2, treatment with hBD-3 induced a more pronounced effect to increase levels of RORγt in CD4+ T cells. This elevated expression may, in turn, be responsible for the induction of higher IL-17A secretion. Consistent with this idea, it was found that treatment with hBD-3 but not hBD-2 was capable of inducing the higher level of secretion of IL-17A. Additionally, treatment with hBD-3 induced an increased expression of IL-6, which is capable of driving the differentiation of naïve T cells towards IL-17-producing Th17 cells. Functionally, using the Treg suppression assay, the data suggested that hBD-2 may dampen down Treg cell ability to induce suppression of Teff cell activity. Interestingly, co-culture with hBD-2 would also appear to increase Teff cell resistance to Treg immunoregulation in vitro. Further investigation using microarray gene analysis revealed chemokine C-C motif ligand 1 (CCL1) as potential genes responding to hBD-2 treatment. The blockade of CCL1 has been reported to inhibit Treg suppressive function. Thus, this study explored the function of these antimicrobial candidates in regulating CD4+ T cell plasticity which could result in hBD-2 and hBD-3 being able to regulate its own production, but also may regulate Treg and Teff cell development and function, thus strengthening the link between innate and adaptive immunity
Resumo:
Morphogens are signalling molecules that play a significant role in modulation of cell fate and development. Hedgehog proteins (Hh) are morphogens that have been shown to be involved in the development of immune cells. In this study, it is demonstrated that treatment of B cells with rShh, can increase B cell activation and also promote survival of B cells at 18hours post-stimulus. Also, at this time point, there was found to be an increase in secretion of antibody isotypes and IL-6. By 40hours post-stimulus, it was observed that the level of B cell activation was apparently arrested in treated B cells, whereas the level of activation continued to rise in untreated B cells. Interestingly, it was observed that there was an increase in the percentage of; CD23-CD25+ B cells when B cells were treated with rShh and this was accompanied by an increase in apoptosis. Consistent with this finding in relation to apoptosis, there was an increased expression of the pro-apoptotic protein Bnip3 in B cells treated with rShh by 40hours post-stimulus. It was observed that there were three subsets of B cells arising in our culture at 40hours, which were all found to possess different characteristics. It was demonstrated that treatment with rShh can increase B cell differentiation towards FO-I at 18hours post-stimulus. By 40hours post-stimulus, Hh signalling can divert differentiation away from the FO-I B cell towards the T2-MZP, which was accompanied by an increase in IL-10 secretion. Gene expression analysis revealed that Hh signalling could modulate a number of molecules involved in delivering the BCR signal into the cells such as Btk, Nfatc1 and Traf2. Additionally, deletion of Dhh, showed that there was a skewed peripheral B cell development in the Dhh-/- mice. Overall, our data demonstrate that Hh signalling can regulate the development of B cells in response to an activation stimulus by strengthening the BCR signalling pathway.