4 resultados para Reconhecimento de Faces
em Research Open Access Repository of the University of East London.
Resumo:
Participants who were unable to detect familiarity from masked 17 ms faces ([Stone and Valentine, 2004] and [Stone and Valentine, in press-b]) did report a vague, partial visual percept. Two experiments investigated the relative strength of the visual percept generated by famous and unfamiliar faces, using masked 17 ms exposure. Each trial presented simultaneously a famous and an unfamiliar face, one face in LVF and the other in RVF. In one task, participants responded according to which of the faces generated the stronger visual percept, and in the other task, they attempted an explicit familiarity decision. The relative strength of the visual percept of the famous face compared to the unfamiliar face was moderated by response latency and participants’ attitude towards the famous person. There was also an interaction of visual field with response latency, suggesting that the right hemisphere can generate a visual percept differentiating famous from unfamiliar faces more rapidly than the left hemisphere. Participants were at chance in the explicit familiarity decision, confirming the absence of awareness of facial familiarity.
Resumo:
Two experiments investigated self-reported emotional reactions to photographs of people with attractive, unattractive or structurally disfigured faces. In Experiment 1 participants viewing disfigured faces reported raised levels of sorrow and curiosity but not raised levels of negative emotions. In Experiment 2 there was more negative emotion and less positive emotion reported under conditions of relatively high anonymity, compared to low anonymity, specific to disfigured faces, suggesting that self-reports are influenced by social desirability. Trait empathy was associated with sorrow and negative emotions when viewing disfigured faces. Disgust sensitivity was associated with negative emotions and inversely associated with positive emotions.
More than just a problem with faces: Altered body perception in a group of congenital prosopagnosics
Resumo:
It has been estimated that one out of forty people in the general population suffer from congenital prosopagnosia (CP), a neurodevelopmental disorder characterized by difficulty identifying people by their faces. CP involves impairment in recognising faces, although the perception of non-face stimuli may also be impaired. Given that social interaction does not only depend on face processing, but also the processing of bodies, it is of theoretical importance to ascertain whether CP is also characterised by body perception impairments. Here, we tested eleven CPs and eleven matched control participants on the Body Identity Recognition Task (BIRT), a forced-choice match-to-sample task, using stimuli that require processing of body, not clothing, specific features. Results indicated that the group of CPs was as accurate as controls on the BIRT, which is in line with the lack of body perception complaints by CPs. However the CPs were slower than controls, and when accuracy and response times were combined into inverse efficiency scores (IES), the group of CPs were impaired, suggesting that the CPs could be using more effortful cognitive mechanisms to be as accurate as controls. In conclusion, our findings demonstrate CP may not generally be limited to face processing difficulties, but may also extend to body perception
Resumo:
Previous research using flanker paradigms suggests that peripheral distracter faces are automatically processed when participants have to classify a single central familiar target face. These distracter interference effects disappear when the central task contains additional anonymous (non-target) faces that load the search for the face target, but not when the central task contains additional non-face stimuli, suggesting there are face-specific capacity limits in visual processing. Here we tested whether manipulating the format of non-target faces in the search task affected face-specific capacity limits. Experiment 1 replicated earlier findings that a distracter face is processed even in high load conditions when participants looked for a target name of a famous person among additional names (non-targets) in a central search array. Two further experiments show that when targets and non-targets were faces (instead of names), however, distracter interference was eliminated under high load—adding non-target faces to the search array exhausted processing capacity for peripheral faces. The novel finding was that replacing non-target faces with images that consisted of two horizontally misaligned face-parts reduced distracter processing. Similar results were found when the polarity of a non-target face image was reversed. These results indicate that face-specific capacity limits are not determined by the configural properties of face processing, but by face parts.