4 resultados para Motor Activity
em Research Open Access Repository of the University of East London.
Resumo:
Previous research has suggested that dehydration may have a negative effect on some aspects of mood, cognitive performance and motor skills (Benton, 2011). Furthermore, a large proportion of children arrive at school in a dehydrated state (Baron, Courbebaisse, Lepicard, & Friedlander, 2015). The present work investigated whether supplementing children with water may, as a consequence of reducing dehydration, improve their cognitive performance and motor skills. In studies 1, 2, 3 and 5, it was found that tasks that predominantly tested motor skills, were improved in children who had a drink, compared to those who did not. Furthermore, study 3 showed that this effect was moderated by hydration status. One theoretical explanation for the poorer performance of dehydrated children is that they may lack the neurological resources to sustain their effort and thus performance does not improve over time. In support of this, these studies showed that, when re-hydrated, performance on these tasks improves to the level of non-dehydrated children. Study 2 showed that the number of errors increased in a StopSignal task in children that had high self-rated levels of thirst, compared to low levels: and hydration status did not moderate this effect. A possible explanation for the increased number of errors in children with high self-rated thirst is that the thirst sensation diverts attention away from the task, causing task performance to deteriorate. In study 4, it was observed that there was a large variation in intra-individual and inter-individual hydration scores throughout the day, which was not related to volume drank or levels of thirst. Further studies should use imaging techniques to study brain activity during dehydration and rehydration, and during periods of high thirst, to help to further elucidate the mechanism underlying the negative effect of dehydration on motor performance, and the effect of self-rated thirst on attention.
Resumo:
Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behaviour and clinical symptoms. The objective was to determine the effect of neurofeedback and motor training and motor training (MOT) alone on motor and non-motor functions in Parkinson’s disease (PD) in a 10-week small Phase I randomised controlled trial. Methods: 30 patients with PD (Hoehn & Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with motor training. Group 2 (MOT: 15 patients) received motor training alone. The primary outcome measure was the Movement Disorder Society – Unified Parkinson’s Disease Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention ‘off-medication’. The secondary outcome measures were the ‘on-medication’ MDS-UPDRS, the Parkinson’s disease Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the ‘off-medication’ state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with motor training is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions. Clinical Trial website : Unique Identifier: NCT01867827 URL: https://clinicaltrials.gov/ct2/show/NCT01867827?term=NCT01867827&rank=1
Resumo:
From 4 to 7 April 2016, 24 researchers from 8 countries and from a variety of academic disciplines gathered in Snekkersten, Denmark, to reach evidence-based consensus about physical activity in children and youth, that is, individuals between 6 and 18 years. Physical activity is an overarching term that consists of many structured and unstructured forms within school and out-of-school-time contexts, including organised sport, physical education, outdoor recreation, motor skill development programmes, recess, and active transportation such as biking and walking. This consensus statement presents the accord on the effects of physical activity on children's and youth's fitness, health, cognitive functioning, engagement, motivation, psychological well-being and social inclusion, as well as presenting educational and physical activity implementation strategies. The consensus was obtained through an iterative process that began with presentation of the state-of-the art in each domain followed by plenary and group discussions. Ultimately, Consensus Conference participants reached agreement on the 21-item consensus statement.
Resumo:
Purpose of review Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we introduce some background methodology of the new developments in this field and give a perspective on how they may be used in neurorehabilitation in the future. Recent findings The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum, brainstem and spinal cord. In Parkinson’s disease and stroke, rt-fMRI-NF has been demonstrated to alter neural activity after the self-regulation training was completed and to modify specific behaviours. Summary Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled clinical trials is in its infancy.