2 resultados para Measurable Multifunctions

em Research Open Access Repository of the University of East London.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale Electronic cigarettes are becoming increasingly popular among smokers worldwide. Commonly reported reasons for use include the following: to quit smoking, to avoid relapse, to reduce urge to smoke, or as a perceived lower-risk alternative to smoking. Few studies, however, have explored whether electronic cigarettes (e-cigarettes) deliver measurable levels of nicotine to the blood. Objective This study aims to explore in experienced users the effect of using an 18-mg/ml nicotine first-generation e-cigarette on blood nicotine, tobacco withdrawal symptoms, and urge to smoke. Methods Fourteen regular e-cigarette users (three females), who are abstinent from smoking and e-cigarette use for 12 h, each completed a 2.5 h testing session. Blood was sampled, and questionnaires were completed (tobacco-related withdrawal symptoms, urge to smoke, positive and negative subjective effects) at four stages: baseline, 10 puffs, 60 min of ad lib use and a 60-min rest period. Results Complete sets of blood were obtained from seven participants. Plasma nicotine concentration rose significantly from a mean of 0.74 ng/ml at baseline to 6.77 ng/ml 10 min after 10 puffs, reaching a mean maximum of 13.91 ng/ml by the end of the ad lib puffing period. Tobacco-related withdrawal symptoms and urge to smoke were significantly reduced; direct positive effects were strongly endorsed, and there was very low reporting of adverse effects. Conclusions These findings demonstrate reliable blood nicotine delivery after the acute use of this brand/model of e-cigarette in a sample of regular users. Future studies might usefully quantify nicotine delivery in relation to inhalation technique and the relationship with successful smoking cessation/harm reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On March 11 2011, an exceptionally large tsunami event was triggered by a massive earthquake offshore, the northeast coast of Japan, which affected coastal infrastructure such as seawalls, coastal dikes and breakwaters in the Tohoku region. Such infrastructure was built to protect against the Level 1 tsunamis that previously hit the region, but not for events as significant as the 2011 Tohoku tsunami, which was categorized as a Level 2 tsunami [Shibayama et al. 2013]. The failure mechanisms of concrete-armoured dikes, breakwaters and seawalls due to Level 2 tsunamis are still not fully understood by researchers and engineers. This paper investigates the failure modes and mechanisms of damaged coastal structures in Miyagi and Fukushima Prefectures, following the authors' post-disaster field surveys carried out between 2011 and 2013. Six significant failure mechanisms were identified for the coastal dikes and seawalls affected by this tsunami: 1) Leeward toe scour failure, 2) Crown armour failure, 3) Leeward slope armour failure, 4) Seaward toe and armour failure, 5) Overturning failure, and 6) Parapet wall failure, in which leeward toe scour being recognized as the major failure mechanism in most surveyed locations. The authors also propose a simple practical mathematical model for predicting the scour depth at the leeward toe of the coastal dikes, by considering the effects of the tsunami hydrodynamics, the soil properties and the type of structure. The key advantage of this model is that it depends entirely on quantities that are measurable in the field. Furthermore this model was further refined by conducting a series of hydraulic model experiments aimed to understand the governing factors of the leeward toe scour failure. Finally, based on the results obtained, key recommendations are given for the design of resilient coastal defence structures that can survive a level 2 tsunami event.