2 resultados para Mammals.

em Research Open Access Repository of the University of East London.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predictions which invoke evolutionary mechanisms ar e hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interac tions in specific physical or social environments o ver many generations. The outcomes have implications fo r understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/non-expresser strategies) when injured, and of helping, ignoring or exploiting another in pain (altruistic/non-altruistic/selfish strategies) . Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury inte rrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, conti ngencies evident from experimental work with a variety of mammals, over a few interactions, were r eplicated in the agent-based model after selection pressure over many generations. More energy-demandi ng expression of pain reduced its frequency in successive generations, and increasing injury frequ ency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased e xpression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits o f helping hardly changed its frequency, while increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent- based modeling allows simulation of complex behavio urs and environmental pressures over evolutionary time.