3 resultados para Localisation spatiale
em Research Open Access Repository of the University of East London.
Resumo:
The focus of this paper is the implementation of a spiking neural network to achieve sound localization; the model is based on the influential short paper by Jeffress in 1948. The SNN has a two-layer topology which can accommodate a limited number of angles in the azimuthal plane. The model accommodates multiple inter-neuron connections with associated delays, and a supervised STDP algorithm is applied to select the optimal pathway for sound localization. Also an analysis of previous relevant work in the area of auditory modelling supports this research.
Resumo:
Sound localisation is defined as the ability to identify the position of a sound source. The brain employs two cues to achieve this functionality for the horizontal plane, interaural time difference (ITD) by means of neurons in the medial superior olive (MSO) and interaural intensity difference (IID) by neurons of the lateral superior olive (LSO), both located in the superior olivary complex of the auditory pathway. This paper presents spiking neuron architectures of the MSO and LSO. An implementation of the Jeffress model using spiking neurons is presented as a representation of the MSO, while a spiking neuron architecture showing how neurons of the medial nucleus of the trapezoid body interact with LSO neurons to determine the azimuthal angle is discussed. Experimental results to support this work are presented.
Resumo:
This paper outlines the development of a crosscorrelation algorithm and a spiking neural network (SNN) for sound localisation based on real sound recorded in a noisy and dynamic environment by a mobile robot. The SNN architecture aims to simulate the sound localisation ability of the mammalian auditory pathways by exploiting the binaural cue of interaural time difference (ITD). The medial superior olive was the inspiration for the SNN architecture which required the integration of an encoding layer which produced biologically realistic spike trains, a model of the bushy cells found in the cochlear nucleus and a supervised learning algorithm. The experimental results demonstrate that biologically inspired sound localisation achieved using a SNN can compare favourably to the more classical technique of cross-correlation.