2 resultados para Lateral cephalometry

em Research Open Access Repository of the University of East London.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modulation of neural activity in visual cortex is thought to be a key mechanism of visual attention. The investigation of attentional modulation in high-level visual areas, however, is hampered by the lack of clear tuning or contrast response functions. In the present functional magnetic resonance imaging study we therefore systematically assessed how small voxel-wise biases in object preference across hundreds of voxels in the lateral occipital complex were affected when attention was directed to objects. We found that the strength of attentional modulation depended on a voxel's object preference in the absence of attention, a pattern indicative of an amplificatory mechanism. Our results show that such attentional modulation effectively increased the mutual information between voxel responses and object identity. Further, these local modulatory effects led to improved information-based object readout at the level of multi-voxel activation patterns and to an increased reproducibility of these patterns across repeated presentations. We conclude that attentional modulation enhances object coding in local and distributed object representations of the lateral occipital complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sound localisation is defined as the ability to identify the position of a sound source. The brain employs two cues to achieve this functionality for the horizontal plane, interaural time difference (ITD) by means of neurons in the medial superior olive (MSO) and interaural intensity difference (IID) by neurons of the lateral superior olive (LSO), both located in the superior olivary complex of the auditory pathway. This paper presents spiking neuron architectures of the MSO and LSO. An implementation of the Jeffress model using spiking neurons is presented as a representation of the MSO, while a spiking neuron architecture showing how neurons of the medial nucleus of the trapezoid body interact with LSO neurons to determine the azimuthal angle is discussed. Experimental results to support this work are presented.