4 resultados para Joint Pain
em Research Open Access Repository of the University of East London.
Resumo:
A patient with loin pain haematuria syndrome suffering chronic throbbing pulsing pain overlaid with prolonged periods of incapacitating colic and overnight vomiting was presented 10 months following diagnosis. Ultrasound was normal. No renal or ureteral stones, or filling defects were seen on CT. At cytoscopy, bladder and urethra were normal, and bloody urine effluxed from the left ureteric orifice. The ureters were normal at diagnosis, and developed new abutting non‐penetrating calcifications by 8 months. Pain episodes of complete incapacitating intensity of 2–4 h duration were reduced to 10 min with 5 mg crushed tadalafil administered at onset. If tadalafil was delayed to after onset, the original course of agony resulted. Daily tadalafil reduced loin pain intensity, but not the exacerbations. Tadalafil efficacy may indicate that the pain exacerbations are due to spasm of ureter smooth muscle. 5 mg tadalafil taken at onset alleviated severe loin pain exacerbations in this case of loin pain haematuria syndrome.
Resumo:
Background Appropriate sensorimotor correlations can result in the illusion of ownership of exogenous body parts. Nevertheless, whether and how the illusion of owning a new body part affects human perception, and in particular pain detection, is still poorly investigated. Recent findings have shown that seeing one’s own body is analgesic, but it is not known whether this effect is transferable to newly embodied, but exogenous, body parts. In recent years, results from our laboratory have demonstrated that a virtual body can be felt as one’s own, provided realistic multisensory correlations. Methods The current work aimed at investigating the impact of virtual body ownership on pain threshold. An immersive virtual environment allowed a first-person perspective of a virtual body that replaced the own. Passive movement of the index finger congruent with the movement of the virtual index finger was used in the “synchronous” condition to induce ownership of the virtual arm. The pain threshold was tested by thermal stimulation under four conditions: 1) synchronous movements of the real and virtual fingers, 2) asynchronous movements, 3) seeing a virtual object instead of an arm, and 4) not seeing any limb in real world. Results Our results show that, independently of attentional and stimulus adaptation processes, the ownership of a virtual arm per se can significantly increase the thermal pain threshold. Conclusions This finding may be relevant for the development and improvement of digital solutions for rehabilitation and pain treatment.
Resumo:
Childhood obesity is commonly associated with a pes planus foot type and altered lower limb joint function during walking. However, limited information has been reported on dynamic intersegment foot motion with the level of obesity in children. The aim of this study was to explore the relationships between intersegment foot motion during gait and body fat in boys age 7 to 11 years. Fat mass was measured in fifty-five boys using air displacement plethysmography. Three-dimensional gait analysis was conducted on the right foot of each participant using the 3DFoot model to capture angular motion of the shank, calcaneus, midfoot and metatarsals. Two multivariate statistical techniques were employed; principle component analysis reduced the multidimensional nature of gait analysis, and multiple linear regression analysis accounted for potential confounding factors. Higher fat mass predicted greater plantarflexion of the calcaneus during the first half and end of stance phase and at the end of swing phase. Greater abduction of the calcaneus throughout stance and swing was predicted by greater fat mass. At the midfoot, higher fat mass predicted greater dorsiflexion and eversion throughout the gait cycle. The findings present novel information on the relationships between intersegment angular motion of the foot and body fat in young boys. The data indicates a more pronated foot type in boys with greater body fat. These findings have clinical implications for pes planus and a predisposition for pain and discomfort during weight bearing activities potentially reducing motivation in obese children to be physically active.
Resumo:
Predictions which invoke evolutionary mechanisms ar e hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interac tions in specific physical or social environments o ver many generations. The outcomes have implications fo r understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/non-expresser strategies) when injured, and of helping, ignoring or exploiting another in pain (altruistic/non-altruistic/selfish strategies) . Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury inte rrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, conti ngencies evident from experimental work with a variety of mammals, over a few interactions, were r eplicated in the agent-based model after selection pressure over many generations. More energy-demandi ng expression of pain reduced its frequency in successive generations, and increasing injury frequ ency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased e xpression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits o f helping hardly changed its frequency, while increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent- based modeling allows simulation of complex behavio urs and environmental pressures over evolutionary time.