2 resultados para Hardware-based security
em Research Open Access Repository of the University of East London.
Resumo:
Individuals and corporate users are persistently considering cloud adoption due to its significant benefits compared to traditional computing environments. The data and applications in the cloud are stored in an environment that is separated, managed and maintained externally to the organisation. Therefore, it is essential for cloud providers to demonstrate and implement adequate security practices to protect the data and processes put under their stewardship. Security transparency in the cloud is likely to become the core theme that underpins the systematic disclosure of security designs and practices that enhance customer confidence in using cloud service and deployment models. In this paper, we present a framework that enables a detailed analysis of security transparency for cloud based systems. In particular, we consider security transparency from three different levels of abstraction, i.e., conceptual, organisation and technical levels, and identify the relevant concepts within these levels. This allows us to provide an elaboration of the essential concepts at the core of transparency and analyse the means for implementing them from a technical perspective. Finally, an example from a real world migration context is given to provide a solid discussion on the applicability of the proposed framework.
Resumo:
Software protection is an essential aspect of information security to withstand malicious activities on software, and preserving software assets. However, software developers still lacks a methodology for the assessment of the deployed protections. To solve these issues, we present a novel attack simulation based software protection assessment method to assess and compare various protection solutions. Our solution relies on Petri Nets to specify and visualize attack models, and we developed a Monte Carlo based approach to simulate attacking processes and to deal with uncertainty. Then, based on this simulation and estimation, a novel protection comparison model is proposed to compare different protection solutions. Lastly, our attack simulation based software protection assessment method is presented. We illustrate our method by means of a software protection assessment process to demonstrate that our approach can provide a suitable software protection assessment for developers and software companies.