3 resultados para Environmental Sustainability
em Research Open Access Repository of the University of East London.
Resumo:
This working paper reflects the authors’ involvement with a civic engagement project funded by the University of East London’s (UEL) Institute for Civic Engagement. It was a collaborative initiative between the Centre for Social Justice and Change, School of Social Sciences, and UEL’s Sustainability Research Institute. The initiative commenced in November 2015 and was completed in July 2016. The civic engagement project is part of an ongoing sustainable living project in Beckton. Situated in the hinterland of UEL’s Docklands campus in the London Borough of Newham this initiative provided an opportunity to work with communities local to UEL. Our involvement in a civic engagement initiative raised issues about what our role as students representing a University might involve, how we may contribute rather than replicate or duplicate ongoing local activities, and what additional skills we could bring to make a positive contribution. Our project was about taking practical actions; by completing a communal garden in a local park and distributing water-saving devices to enable households to reduce their expenditure and contribute towards sustainable living. Research findings informed these practical actions and we were able to use our knowledge concerning environmental sustainability and research in discussions with residents and local agencies. Our experience also raised issues about how best to do research that can be used to inform and facilitate social action. This is particularly challenging in local communities which are ethnically diverse and culturally fragmented. This working paper describes our experiences and reflections.
Resumo:
This paper discusses the sustainable performance of geosynthetic clay liners (GCLs) which are popularly specified as “leachate retaining” or as “water proofing” membranes in the geo-environmental construction industry. Geosynthetic clay liners (GCLs) are composite matting comprising of bentonite clay with two covering geosynthetics. These are innovative labour saving construction material, developed over the last three decades. The paper outlines the variety of Geosynthetic Clay Liners (GCLs) can be classified essentially into two distinctly different forms viz; (a) air dry (< 8% m/c) with granular or powdered bentonite or (b) bentonite cake factory prehydrated to a moisture content (~40% m/c) beyond its shrinkage limit and vacuum extruded as a clay cake to enhance its sustainable performance. The dominant mineral in bentonite clay is the three-layered (2:1) clay mineral montmorillonite. High quality bentonites need to be used in the GCL manufacture. Sodium montmorillonite has the desired characteristic of high swelling capacity, high cation exchange capacity and the consequently very low hydraulic conductivity, providing the basis for the hydraulic sealing medium in GCLs. These encapsulate the active montmorillonite clay minerals which depend on the water and chemical balance between the sealing element and the surrounding geo environment. Quantitative mineralogical analyses and an assessment of the adsorbed cation regime, diffusion coefficients and clay leachate compatibility must necessarily be an integral part of the site appraisal to ensure acceptable long term sustainability and performance. Factors influencing the desired performance of bentonite in the GCLs placed in difficult construction and hostile chemical environments are discussed in this paper. Accordingly, the performance specifications for GCLs are identified and the appropriateness of enhancing the cation exchange capacity with polymer treatment and the need for factory prehydration of the untreated sodium bentonite is emphasised. The advantage of factory prehydrating the polymer treated bentonite to fluid content beyond its shrinkage limit and subsequently factory processing it to develop laminated clay is to develop a GCL that has enviable sealing characteristics with a greater resistance to geochemical attack and cracking. Since clay liners are buried in the ground as base liners, capping layer or as structural water proofing membrane, they can easily avoid strict quality and performance monitoring being “out of sight, out of mind!”. It is very necessary that barrier design for leachate containment must necessarily be in accordance with legislative requirement Assessment of long term hydraulic conductivities and clay-leachate compatibility assessment is deemed necessary. The derogatory factors affecting the sustainable performance of the bentonite in GCLs placed in difficult construction and hostile chemical environments are discussed. Sustainability concepts incorporated in waste management practice must aim to achieve 100% recycling and fully implement the handling of solid waste in developing countries with relatively lower labour costs.
Resumo:
Adaptive governance is an emerging theory in natural resource management. This paper addresses a gap in the literature by exploring the potential of adaptive governance for delivering resilience and sustainability in the urban context. We explore emerging challenges to transitioning to urban resilience and sustainability: bringing together multiple scales and institutions; facilitating a social-ecological-systems approach and; embedding social and environmental equity into visions of urban sustainability and resilience. Current approaches to adaptive governance could be helpful for addressing these first two challenges but not in addressing the third. Therefore, this paper proposes strengthening the institutional foundations of adaptive governance by engaging with institutional theory. We explore this through empirical research in the Rome Metropolitan Area, Italy. We argue that explicitly engaging with these themes could lead to a more substantive urban transition strategy and contribute to adaptive governance theory.