2 resultados para Divergent Environments

em Research Open Access Repository of the University of East London.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the sustainable performance of geosynthetic clay liners (GCLs) which are popularly specified as “leachate retaining” or as “water proofing” membranes in the geo-environmental construction industry. Geosynthetic clay liners (GCLs) are composite matting comprising of bentonite clay with two covering geosynthetics. These are innovative labour saving construction material, developed over the last three decades. The paper outlines the variety of Geosynthetic Clay Liners (GCLs) can be classified essentially into two distinctly different forms viz; (a) air dry (< 8% m/c) with granular or powdered bentonite or (b) bentonite cake factory prehydrated to a moisture content (~40% m/c) beyond its shrinkage limit and vacuum extruded as a clay cake to enhance its sustainable performance. The dominant mineral in bentonite clay is the three-layered (2:1) clay mineral montmorillonite. High quality bentonites need to be used in the GCL manufacture. Sodium montmorillonite has the desired characteristic of high swelling capacity, high cation exchange capacity and the consequently very low hydraulic conductivity, providing the basis for the hydraulic sealing medium in GCLs. These encapsulate the active montmorillonite clay minerals which depend on the water and chemical balance between the sealing element and the surrounding geo environment. Quantitative mineralogical analyses and an assessment of the adsorbed cation regime, diffusion coefficients and clay leachate compatibility must necessarily be an integral part of the site appraisal to ensure acceptable long term sustainability and performance. Factors influencing the desired performance of bentonite in the GCLs placed in difficult construction and hostile chemical environments are discussed in this paper. Accordingly, the performance specifications for GCLs are identified and the appropriateness of enhancing the cation exchange capacity with polymer treatment and the need for factory prehydration of the untreated sodium bentonite is emphasised. The advantage of factory prehydrating the polymer treated bentonite to fluid content beyond its shrinkage limit and subsequently factory processing it to develop laminated clay is to develop a GCL that has enviable sealing characteristics with a greater resistance to geochemical attack and cracking. Since clay liners are buried in the ground as base liners, capping layer or as structural water proofing membrane, they can easily avoid strict quality and performance monitoring being “out of sight, out of mind!”. It is very necessary that barrier design for leachate containment must necessarily be in accordance with legislative requirement Assessment of long term hydraulic conductivities and clay-leachate compatibility assessment is deemed necessary. The derogatory factors affecting the sustainable performance of the bentonite in GCLs placed in difficult construction and hostile chemical environments are discussed. Sustainability concepts incorporated in waste management practice must aim to achieve 100% recycling and fully implement the handling of solid waste in developing countries with relatively lower labour costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

REVERIE (REal and Virtual Engagement in Realistic Immersive Environments [1]) targets novel research to address the demanding challenges involved with developing state-of-the-art technologies for online human interaction. The REVERIE framework enables users to meet, socialise and share experiences online by integrating cutting-edge technologies for 3D data acquisition and processing, networking, autonomy and real-time rendering. In this paper, we describe the innovative research that is showcased through the REVERIE integrated framework through richly defined use-cases which demonstrate the validity and potential for natural interaction in a virtual immersive and safe environment. Previews of the REVERIE demo and its key research components can be viewed at www.youtube.com/user/REVERIEFP7.