5 resultados para Collaborative virtual environment

em Research Open Access Repository of the University of East London.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innovation in virtual reality and motion sensing devices is pushing the development of virtual communication platforms towards completely immersive scenarios, which require full user interaction and create complex sensory experiences. This evolution influences user experiences and creates new paradigms for interaction, leading to an increased importance of user evaluation and assessment on new systems interfaces and usability, to validate platform design and development from the users’ point of view. The REVERIE research project aims to develop a virtual environment service for realistic inter-personal interaction. This paper describes the design challenges faced during the development process of user interfaces and the adopted methodological approach to user evaluation and assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Just as readers feel immersed when the story line adheres to their experiences, users will more easily feel immersed in a virtual environment if the behavior of the characters in that environment adheres to their expectations, based on their lifelong observations in the real world. This paper introduces a framework that allows authors to establish natural, human-like behavior, physical interaction and emotional engagement of characters living in a virtual environment. Represented by realistic virtual characters, this framework allows people to feel immersed in an Internet based virtual world in which they can meet and share experiences in a natural way as they can meet and share experiences in real life. Rather than just being visualized in a 3D space, the virtual characters (autonomous agents as well as avatars representing users) in the immersive environment facilitate social interaction and multi-party collaboration, mixing virtual with real.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Appropriate sensorimotor correlations can result in the illusion of ownership of exogenous body parts. Nevertheless, whether and how the illusion of owning a new body part affects human perception, and in particular pain detection, is still poorly investigated. Recent findings have shown that seeing one’s own body is analgesic, but it is not known whether this effect is transferable to newly embodied, but exogenous, body parts. In recent years, results from our laboratory have demonstrated that a virtual body can be felt as one’s own, provided realistic multisensory correlations. Methods The current work aimed at investigating the impact of virtual body ownership on pain threshold. An immersive virtual environment allowed a first-person perspective of a virtual body that replaced the own. Passive movement of the index finger congruent with the movement of the virtual index finger was used in the “synchronous” condition to induce ownership of the virtual arm. The pain threshold was tested by thermal stimulation under four conditions: 1) synchronous movements of the real and virtual fingers, 2) asynchronous movements, 3) seeing a virtual object instead of an arm, and 4) not seeing any limb in real world. Results Our results show that, independently of attentional and stimulus adaptation processes, the ownership of a virtual arm per se can significantly increase the thermal pain threshold. Conclusions This finding may be relevant for the development and improvement of digital solutions for rehabilitation and pain treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The education of the radiography profession is based within higher education establishments, yet a critical part of all radiography programmes is the clinical component where students learn the practical skills of the profession. Assessments therefore not only have to assess a student’s knowledge, but also their clinical competence and core skills in line with both Health and Care Professions Council and the Society and College of Radiographers requirements. This timely thesis examines the possibility of using the Virtual Environment for RadioTherapy (VERT) as an assessment tool to evaluate a student’s competence so giving the advantage of a standard assessment and relieving time pressures in the clinical department. A mixed methods approach was taken which can be described as a Quantitative Qualitative design with the emphasis being on the Quantitative element; a so called QUAN  qual design. The quantitative evaluation compared two simulations, one in the virtual reality environment and another in the department using a real treatment machine. Students were asked to perform two electron setups in each simulation; the order being randomly decided and so the study would be described as a randomised cross-over design. Following this, qualitative data was collected in student focus groups to explore student perspectives in more depth. Findings indicated that the performance between the two simulators was significantly different, p < 0∙001; the virtual simulation scoring significantly lower than the hospital based simulation overall and in virtually all parameters being assessed. Thematic analysis of the qualitative data supported this finding and identified 4 main themes; equipment use, a lack of reality, learning opportunities and assessment of competence. One other sub-theme identified for reality was that of the environment and senses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

REVERIE (REal and Virtual Engagement in Realistic Immersive Environments [1]) targets novel research to address the demanding challenges involved with developing state-of-the-art technologies for online human interaction. The REVERIE framework enables users to meet, socialise and share experiences online by integrating cutting-edge technologies for 3D data acquisition and processing, networking, autonomy and real-time rendering. In this paper, we describe the innovative research that is showcased through the REVERIE integrated framework through richly defined use-cases which demonstrate the validity and potential for natural interaction in a virtual immersive and safe environment. Previews of the REVERIE demo and its key research components can be viewed at www.youtube.com/user/REVERIEFP7.