4 resultados para Auditory perception.

em Research Open Access Repository of the University of East London.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of visual cues during the processing of audiovisual (AV) speech is known to be less efficient in children and adults with language difficulties and difficulties are known to be more prevalent in children from low-income populations. In the present study, we followed an economically diverse group of thirty-seven infants longitudinally from 6–9 months to 14–16 months of age. We used eye-tracking to examine whether individual differences in visual attention during AV processing of speech in 6–9 month old infants, particularly when processing congruent and incongruent auditory and visual speech cues, might be indicative of their later language development. Twenty-two of these 6–9 month old infants also participated in an event-related potential (ERP) AV task within the same experimental session. Language development was then followed-up at the age of 14–16 months, using two measures of language development, the Preschool Language Scale and the Oxford Communicative Development Inventory. The results show that those infants who were less efficient in auditory speech processing at the age of 6–9 months had lower receptive language scores at 14–16 months. A correlational analysis revealed that the pattern of face scanning and ERP responses to audiovisually incongruent stimuli at 6–9 months were both significantly associated with language development at 14–16 months. These findings add to the understanding of individual differences in neural signatures of AV processing and associated looking behavior in infants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz-1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of +/-10 degrees is used. For angular resolutions down to 2.5 degrees , it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Editorial on the Research Topic: Facing the Other: Novel Theories and Methods in Face Perception Research

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been estimated that one out of forty people in the general population suffer from congenital prosopagnosia (CP), a neurodevelopmental disorder characterized by difficulty identifying people by their faces. CP involves impairment in recognising faces, although the perception of non-face stimuli may also be impaired. Given that social interaction does not only depend on face processing, but also the processing of bodies, it is of theoretical importance to ascertain whether CP is also characterised by body perception impairments. Here, we tested eleven CPs and eleven matched control participants on the Body Identity Recognition Task (BIRT), a forced-choice match-to-sample task, using stimuli that require processing of body, not clothing, specific features. Results indicated that the group of CPs was as accurate as controls on the BIRT, which is in line with the lack of body perception complaints by CPs. However the CPs were slower than controls, and when accuracy and response times were combined into inverse efficiency scores (IES), the group of CPs were impaired, suggesting that the CPs could be using more effortful cognitive mechanisms to be as accurate as controls. In conclusion, our findings demonstrate CP may not generally be limited to face processing difficulties, but may also extend to body perception