2 resultados para Assessment scale
em Research Open Access Repository of the University of East London.
Resumo:
Objective: Caffeine has been shown to have effects on certain areas of cognition, but in executive functioning the research is limited and also inconsistent. One reason could be the need for a more sensitive measure to detect the effects of caffeine on executive function. This study used a new non-immersive virtual reality assessment of executive functions known as JEF© (the Jansari Assessment of Executive Function) alongside the ‘classic’ Stroop Colour- Word task to assess the effects of a normal dose of caffeinated coffee on executive function. Method: Using a double-blind, counterbalanced within participants procedure 43 participants were administered either a caffeinated or decaffeinated coffee and completed the ‘JEF©’ and Stroop tasks, as well as a subjective mood scale and blood pressure pre- and post condition on two separate occasions a week apart. JEF© yields measures for eight separate aspects of executive functions, in addition to a total average score. Results: Findings indicate that performance was significantly improved on the planning, creative thinking, event-, time- and action-based prospective memory, as well as total JEF© score following caffeinated coffee relative to the decaffeinated coffee. The caffeinated beverage significantly decreased reaction times on the Stroop task, but there was no effect on Stroop interference. Conclusion: The results provide further support for the effects of a caffeinated beverage on cognitive functioning. In particular, it has demonstrated the ability of JEF© to detect the effects of caffeine across a number of executive functioning constructs, which weren’t shown in the Stroop task, suggesting executive functioning improvements as a result of a ‘typical’ dose of caffeine may only be detected by the use of more real-world, ecologically valid tasks.
Resumo:
Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variability management is the handling and effective visualization of large-scale (industry-size) models, which in many projects, can reach the order of thousands, along with the dependency relationships that exist among them. These have raised many concerns regarding the scalability of current variability management tools and techniques and their lack of industrial adoption. To address the scalability issues, this work employed a combination of quantitative and qualitative research methods to identify the reasons behind the limited scalability of existing variability management tools and techniques. In addition to producing a comprehensive catalogue of existing tools, the outcome form this stage helped understand the major limitations of existing tools. Based on the findings, a novel approach was created for managing variability that employed two main principles for supporting scalability. First, the separation-of-concerns principle was employed by creating multiple views of variability models to alleviate information overload. Second, hyperbolic trees were used to visualise models (compared to Euclidian space trees traditionally used). The result was an approach that can represent models encompassing hundreds of variability points and complex relationships. These concepts were demonstrated by implementing them in an existing variability management tool and using it to model a real-life product line with over a thousand variability points. Finally, in order to assess the work, an evaluation framework was designed based on various established usability assessment best practices and standards. The framework was then used with several case studies to benchmark the performance of this work against other existing tools.