2 resultados para 6162 Cognitive science
em Research Open Access Repository of the University of East London.
Resumo:
The mammalian binaural cue of interaural time difference (ITD) and cross-correlation have long been used to determine the point of origin of a sound source. The ITD can be defined as the different points in time at which a sound from a single location arrives at each individual ear [1]. From this time difference, the brain can calculate the angle of the sound source in relation to the head [2]. Cross-correlation compares the similarity of each channel of a binaural waveform producing the time lag or offset required for both channels to be in phase with one another. This offset corresponds to the maximum value produced by the cross-correlation function and can be used to determine the ITD and thus the azimuthal angle θ of the original sound source. However, in indoor environments, cross-correlation has been known to have problems with both sound reflections and reverberations. Additionally, cross-correlation has difficulties with localising short-term complex noises when they occur during a longer duration waveform, i.e. in the presence of background noise. The crosscorrelation algorithm processes the entire waveform and the short-term complex noise can be ignored. This paper presents a technique using thresholding which enables higher-localisation abilities for short-term complex sounds in the midst of background noise. To determine the success of this thresholding technique, twenty-five sounds were recorded in a dynamic and echoic environment. The twenty-five sounds consist of hand-claps, finger-clicks and speech. The proposed technique was compared to the regular cross-correlation function for the same waveforms, and an average of the azimuthal angles determined for each individual sample. The sound localisation ability for all twenty-five sound samples is as follows: average of the sampled angles using cross-correlation: 44%; cross-correlation technique with thresholding: 84%. From these results, it is clear that this proposed technique is very successful for the localisation of short-term complex sounds in the midst of background noise and in a dynamic and echoic indoor environment.
Resumo:
This study investigated the impact that mouth rinsing carbohydrate solution has on skill-specific performance and reaction time following a fatigue inducing bout of fencing in epee fencers. Nine healthy, national level epee fencers visited a laboratory on 2 occasions, separated by a minimum of 5 days, to complete a 1-minute lunge test and Stroop test pre and post fatigue. Heart rate and ratings of perceived exertion (RPE) were recorded during completion of the fatiguing protocol. Between fights the participants mouth rinsed for 10 seconds, either 25ml of 6.7% maltodextrin solution (MALT) or water (PLAC). Blood lactate and glucose were recorded at baseline, pre- and post-testing. Results showed an increase in heart rate and overall RPE over time in both conditions. There were no differences in blood glucose (F(1,8)=.63, P=.4, ηp=.07) or blood lactate levels (F(1,8)=.12, P=.70, ηp=.01) between conditions as a function of time. There was a significant improvement in lunge test accuracy during the MALT trial (F(1,8)=5.21, P=.05, ηp=.40) with an increase from pre (81.2 ±8.3%) to post (87.6 ±9.4%), whereas there was no significant change during the placebo (pre 82.1 ±8.8%, post 78.8 ±6.4%). There were no recorded differences between conditions in response time to congruent (F(1,8)=.33, P=.58, ηp=.04) or incongruent stimuli (F(1,8)=.19, P=.68, ηp=.02). The study indicates that when fatigued mouth rinsing MALT significantly improves accuracy of skill-specific fencing performance but no corresponding influence on reaction time was observed.