1 resultado para 16-157
em Research Open Access Repository of the University of East London.
Resumo:
Predictions which invoke evolutionary mechanisms ar e hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interac tions in specific physical or social environments o ver many generations. The outcomes have implications fo r understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/non-expresser strategies) when injured, and of helping, ignoring or exploiting another in pain (altruistic/non-altruistic/selfish strategies) . Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury inte rrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, conti ngencies evident from experimental work with a variety of mammals, over a few interactions, were r eplicated in the agent-based model after selection pressure over many generations. More energy-demandi ng expression of pain reduced its frequency in successive generations, and increasing injury frequ ency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased e xpression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits o f helping hardly changed its frequency, while increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent- based modeling allows simulation of complex behavio urs and environmental pressures over evolutionary time.